
 http://sim.sagepub.com/
SIMULATION

 http://sim.sagepub.com/content/90/6/717
The online version of this article can be found at:

DOI: 10.1177/0037549714533842

 2014 90: 717SIMULATION
George-Dimitrios Kapos, Vassilis Dalakas, Mara Nikolaidou and Dimosthenis Anagnostopoulos
An integrated framework for automated simulation of SysML models using DEVS

Published by:

 http://www.sagepublications.com

On behalf of:

 Society for Modeling and Simulation International (SCS)

 can be found at:SIMULATIONAdditional services and information for

 http://sim.sagepub.com/cgi/alertsEmail Alerts:

 http://sim.sagepub.com/subscriptionsSubscriptions:

 http://www.sagepub.com/journalsReprints.navReprints:

 http://www.sagepub.com/journalsPermissions.navPermissions:

 http://sim.sagepub.com/content/90/6/717.refs.htmlCitations:

 What is This?

- Jun 2, 2014Version of Record >>

 at Harokopio University on June 3, 2014sim.sagepub.comDownloaded from at Harokopio University on June 3, 2014sim.sagepub.comDownloaded from

http://sim.sagepub.com/
http://sim.sagepub.com/content/90/6/717
http://www.sagepublications.com
http://www.scs.org/
http://sim.sagepub.com/cgi/alerts
http://sim.sagepub.com/subscriptions
http://www.sagepub.com/journalsReprints.nav
http://www.sagepub.com/journalsPermissions.nav
http://sim.sagepub.com/content/90/6/717.refs.html
http://sim.sagepub.com/content/90/6/717.full.pdf
http://online.sagepub.com/site/sphelp/vorhelp.xhtml
http://sim.sagepub.com/
http://sim.sagepub.com/

Simulation

Simulation: Transactions of the Society for

Modeling and Simulation International

2014, Vol. 90(6) 717–744

� 2014 The Society for Modeling and

Simulation International

DOI: 10.1177/0037549714533842

sim.sagepub.com

An integrated framework for
automated simulation of SysML
models using DEVS

George-Dimitrios Kapos, Vassilis Dalakas, Mara Nikolaidou
and Dimosthenis Anagnostopoulos

Abstract
System models are constructed to design, study, and understand complex systems. According to the systems modeling
language (SysML) that is a standard for model-based system engineering, all engineering activities should be performed
using a common model. To validate complex system models defined in SysML, simulation is usually employed. There are
numerous efforts to simulate SysML models using different simulation methods and tools. However, the efficient support
of automated generation of executable simulation code is still an issue tangled by the research community. This paper
introduces DEVSys, an integrated framework for utilizing existing SysML models and automatically producing executable
discrete event simulation code, according to model driven architecture (MDA) concepts. Although this approach is not
simulation-specific, discrete event system specification (DEVS) was employed, due to the similarities between SysML and
DEVS, mainly in system structure description, and the mature, yet ongoing research on expressing executable DEVS
models in a simulator-neutral manner. DEVSys framework elements include (a) a SysML profile for DEVS, enabling inte-
gration of simulation capabilities into SysML models, (b) a meta-model for DEVS, allowing the utilization of MDA con-
cepts and tools, (c) a transformation of SysML models to DEVS models, using a standard model transformation language
as query/view/transform (QVT), and (d) the generation of DEVS executable code for a DEVS simulation environment
with an extensible markup language (XML) interface. The definition and implementation of DEVSys elements, as well as
the process for its application are demonstrated and discussed, with the aid of a simple working example.

Keywords
Simulation methodology, DEVS, SysML, automated code generation, model transformation, simulation tools, MDA, QVT,
case study

1. Introduction

In model-based system engineering, as defined by

INCOSE,1 a central system model is used as a reference to

perform all engineering activities in the specification,

design, integration, validation, and operation of a system.

However, most activities are commonly served by autono-

mous, independently defined system models. For example,

system validation is an engineering activity, often being

performed in a model-based fashion using simulation.2

Systems modeling language (SysML) was proposed as a

general-purpose graphical modeling language for describ-

ing the reference models used to perform all engineering

activities for a broad range of systems and systems-of-

systems.3 Specific engineering activities may be accom-

plished either by the system engineer using a SysML mod-

eling tool (e.g. system design) or by external tools (e.g.

system validation) or even by a combination of them.

SysML system models should be defined independently of

tools, targeting a specific activity, and support different

levels of detail to accommodate all engineering activities.

However, these models should be properly enriched in

order to serve activity-specific purposes, e.g. to facilitate

system model validation by an external tool. SysML pro-

vides the means to enrich system models, utilizing stan-

dard unified modeling language (UML) extension

mechanisms, such as stereotypes and profiles.4

Department of Informatics and Telematics, Harokopio University of

Athens, Greece

Corresponding author:

George-Dimitrios Kapos, Department of Informatics and Telematics,

Harokopio University of Athens, 70 El. Venizelou Str, 17671 Athens,

Greece.

Email: gdkapos@hua.gr

 at Harokopio University on June 3, 2014sim.sagepub.comDownloaded from

http://sim.sagepub.com/

In the simulation community, simulation methodologies

provide the means to define custom system models, which

are consequently simulated using corresponding simulation

environments. In this case, system modeling and system

simulation are not always treated as a unified activity,

served by the same system model. Currently, there is a

variety of available tools that combine model development

and simulation execution. Academic tools, such as

CoSMoS or Ptolemy II,5–7 and commercial tools, such as

SimEvents,8 support component-based modeling and simu-

lation. The Ptolemy project studies modeling, simulation,

and design of concurrent, real-time, embedded systems.

Focus is given on assembling concurrent components.

SimEvents, which is an extension of Simulink,8 provides a

discrete-event simulation engine and a component library.

Component-based system modeling and simulation

(CoSMoS) is a framework aimed at integrated visual

model development, model configuration and automatic

simulation data collection. The DEVS-Suite is offered as

part of CoSMoS,5 enabling both modeling and simulation

according to discrete event system specification (DEVS).9

Although there are substantial differences in the aim and

structure of these tools, such environments facilitate the

description of system structure and behavior through a gra-

phical user interface, provide model libraries to ease sys-

tem description, generate corresponding simulation code,

and produce simulation output. Their major disadvantage

has to do with the lack of interoperability.5 In these

approaches, system modeling is conducted following the

supported simulation modeling method; thus, open stan-

dards, such as SysML, cannot be supported for system

modeling.

In cases where the system is modelled using SysML, to

validate the proposed system architectures, quantitative

methods are usually applied, focusing on system perfor-

mance. Thus, system validation is often performed using

simulation. Since most simulation methodologies are

model-based, such an approach is suitable for model-based

system engineering. This justifies the increased interest in

integrating SysML modeling environments and simulation

tools. To this end, there are numerous efforts to simulate

SysML models.10–19 Most of them target at transforming

SysML system models to simulation models, executed in a

specific simulation environment, as for example PetriNets

or Modelica.17,18 Though handled differently, the same

issues arise in all these efforts:

(a) The need to embed simulation-specific properties

in SysML models, commonly by the definition of

a simulation-related profile, is recognized. In order

to enable the construction of executable simulation

models, simulation-specific capabilities grouped

within a SysML profile must be embedded within

SysML models to serve system validation.10,18

These capabilities depend on the simulation

methodology applied and should ease the transfor-

mation of the SysML model to the corresponding

simulation model supported by the selected simu-

lation tool.

(b) The system domain must be clarified. Is the effort

targeting a specific domain, as for example pro-

duction systems,11 or it may be applied to any sys-

tem domain? In the first case, the simulation

environment usually supports model libraries for

the specific domain, thus structural aspects of the

model are focused in simulation code generation.

In the latter, system behavior should also be

defined in SysML and simulation code generation

process becomes more complex.

(c) The degree of automation in simulation code gen-

eration should be explored. There are efforts

resulting in the semi-automation of code genera-

tion.10,16 In this case, the system engineer should

be able to actually write code for the specific

simulation environment. We argue that code com-

position should be avoided.

(d) Simulation code generation should be accom-

plished using standard concepts and methods.

Model transformation concepts proposed by

model driven architecture (MDA) are explored by

current efforts aiming at efficient code generation.

A prominent effort in this area is the definition of

the SysML4Modelica profile, endorsed by the

Object Management Group (OMG),20 and the cor-

responding transformations in query/view/trans-

form (QVT) language to convert SysML system

models, defined using the profile, to executable

Modelica simulation code. QVT is a standard set

of languages for model transformation defined by

the OMG. The application of the proposed profile

is currently under investigation, as corresponding

tools were recently made available.20

Most of the aforementioned efforts focus on the defini-

tion of simulation-related profiles, while the automated

generation of simulation code is not fully supported.

Furthermore, in most cases simulation model correctness

and validity is handled within the simulation environment

and not within the SysML model. Here, we argue that

simulation-related profiles should provide constraints to

ensure system and simulation model correctness before

generating the simulation code, minimizing inconsisten-

cies that may occur at this level. Automated simulation

code generation should be performed using standard meth-

ods and tools, as proposed by OMG.20 Following MDA

guidelines, SysML models may be automatically trans-

formed to executable simulation models. In cases, where

domain-specific model libraries are supported by the simu-

lation environment,19 the transformation is focused on sys-

tem structure and SysML models are easily annotated with

718 Simulation: Transactions of the Society for Modeling and Simulation International 90(6)

 at Harokopio University on June 3, 2014sim.sagepub.comDownloaded from

http://sim.sagepub.com/

simulation properties. To promote a more generalized

approach, SysML models should be enriched with simula-

tion model behavior description, which in turn, should be

transformed into simulation code for a specific simulation

framework. In such cases, both the simulation-related pro-

file and the corresponding system model transformation

are more complex, to enable model behavior description

without requiring existing library components. To this end,

the efficient support of automated executable simulation

code generation is still an issue tangled by the research

community.

This paper presents a successful approach that automati-

cally transforms appropriately enriched existing SysML

models to executable DEVS simulation models following

MDA concepts,9,21 as suggested by McGinnis and Ustun,10

Schonherr and Rose,11 and the OMG.20 The proposed

approach is not restricted to any specific domain, sup-

ported by corresponding model libraries. However, it is

better suited for systems that can be described in a discrete

event context. The existence of a SysML profile, facilitat-

ing DEVS model behavior description is a prerequisite and

considered as a first step towards this endeavor. As a proof

of concept, the preliminary version of the corresponding

DEVS SysML profile has been presented elsewhere.22 The

presented transformation of SysML system models to

DEVS simulation models is considered as the second,

equally important step, followed by the execution of

DEVS simulation code within existing DEVS simulators.

Adopting the proposed approach, simulation models

extracted from the predefined SysML models would

become executable without any additional programming

effort from the system engineer.

Ideally, the engineer would prefer to be relieved from

the burden of enriching system models according to the

semantics of the simulation framework and the respective

profile. However, derived simulation models must be

executable. This cannot be ensured by the standard

SysML profile, so a simulation-specific profile is required.

Additionally, model enrichment is expected to be quite

simpler than composing simulation code or recreating a

specific simulation model.

DEVS formalism provides a conceptual framework for

specifying discrete event simulation models executed on a

variety of simulators,9 such as DEVS-C++ , DEVSJava,23

cell-DEVS,24 DEVS/RMI,25 DEVS XLSC,26 or even

DEVS/SOA,27 which offers DEVS simulators as web ser-

vices. In any case, executable models are defined either in

C++ or Java, while DEVS XLSC accepts as input DEVS

models described in XML. To deal with interoperability

issues between existing tools, there are considerable

efforts to establish a standard XML-based representation

for DEVS,28,29 preparing the ground for the definition of

a DEVS meta-model. Moreover, both SysML and

DEVS occupy a hierarchical approach in defining model

structure, where components may be contained in

other components and interconnected with other compo-

nents through ports.22 These similarities are exploited in

order to integrate them and support the transformation of

SysML models to valid executable DEVS simulation

models.

Embedding a DEVS formalism detailed description

within SysML models enhances their expressiveness in

terms of system evaluation, since it enables the straightfor-

ward execution of these models on existing simulation

environments. At the same time, one might consider that

the modeler is restricted when defining system behavior.

Thus DEVS-related constraints should be applied only

when system evaluation is performed using a DEVS

SysML profile that properly extends the SysML meta-

model for simulation purposes. SysML models defined

using this profile in any standard modeling tool could be

consequently simulated in any DEVS simulator.

SysML models can be exported from any standard

modeling tool in XML metadata interchange (XMI) format

that could be translated to simulation code.30 Instead of

implementing such a translator for each existing DEVS

simulation environment, the definition and adoption of a

DEVS platform independent model (PIM), described using

a meta-object facility (MOF),31 is suggested here as a fun-

damental, intermediate transformation stage. MOF is an

OMG standard for model-driven engineering that allows

the definition of models representing specific domains,

such as the DEVS formalism. Building a QVT transforma-

tion from a SysML/UML MOF meta-model to a DEVS

MOF meta-model enables the transition of models defined

in SysML to executable DEVS models in a standard fash-

ion.32 In this case, SysML models are transformed into

DEVS models and consequently are translated to DEVS

executable code, using existing tools. A novel MOF meta-

model for DEVS makes it usable within standard, open

model manipulation tools, such as Medini used for defin-

ing and executing QVT transformations. An existing

DEVS simulation tool reported by Meseth et al. was cho-

sen for model simulation,26 as it provided an XML inter-

face for DEVS model description. The XML-based

language introduced in the tool is named XLSC and

enables the description of DEVS models in XML format,

which are consequently executed into a DEVSJava simula-

tor. DEVS SysML Profile and corresponding constraints

are implemented in MagicDraw modeling tool.33 All the

required DEVSys framework elements have been imple-

mented, integrated with existing tools and tested.

While SysML-to-DEVS model transformation could be

bidirectional (from/to SysML models), in this paper we

discuss only the transformation from SysML models to

DEVS models. However, the employment of standard

tools, languages, and formalisms enables a possible inte-

gration of the simulation results back into the SysML sys-

tem model, following the opposite direction in a similar

fashion.

Kapos et al. 719

 at Harokopio University on June 3, 2014sim.sagepub.comDownloaded from

http://sim.sagepub.com/

The rest of the paper is structured as follows. A short

overview of background work is presented in Section 2,

while the DEVSys framework is discussed in Section 3. In

Section 4, the DEVS SysML profile is described, empha-

sizing on the corresponding stereotypes and constraints

necessary to enrich SysML models with DEVS model

behavior. In Section 5, the DEVS MOF meta-model and

the transformation from SysML to DEVS models using

QVT is discussed. In Section 6, the necessary transforma-

tion and execution of DEVS models in the DEVS XLSC

simulation environment is presented. Conclusions and

remarks on further research are summarized in Section 7.

A simple textbook DEVS system example is used

throughout the paper to facilitate the presentation of the

discrete steps of the proposed approach in a comprehen-

sive fashion, facilitating the reader to easily realize model

transformations and corresponding tools. Model transfor-

mation code listings and screen shots of the employed

tools are also included in an Appendix to provide addi-

tional information to the interested reader.

2. Background
2.1. Simulating SysML system models

SysML is the system modeling language proposed by the

OMG, enabling visual modeling of systems and systems-

of-systems using a series of standard UML modeling tools.

It supports the description of the structure of the system,

its behavior and requirements imposed on its operation.

Considering the importance of model validation through

simulation, the need to integrate SysML modeling tools

and simulation environments is evident. To this end,

numerous efforts are recorded in the literature from both

research and industry communities. In most cases, SysML

models defined within a modeling tool are exported in

XML format and, consequently, transformed into simula-

tor specific models and forwarded to the simulation

environment.

SysML supports a variety of diagrams describing sys-

tem structure and behavioral aspects, which are commonly

required to perform simulation. Depending on the nature

and specific characteristics of the system domain under

study, there is a diversity of approaches on simulating

models defined in SysML, utilizing different SysML dia-

grams. A method for simulating the behavior of continuous

systems using mathematical simulation was reported by

Peak et al.,13 utilizing SysML parametric diagrams which

allow the description of complex mathematical equations.

System models are simulated using composable objects

(COBs).14 It should be noted that, in any case, SysML

models should be defined in a way which facilitates their

simulation;15 thus, simulation-specific characteristics are

embedded within system models through corresponding

profiles. In the study reported by Paredis et al.,16

simulation was performed using Modelica. To ensure that

a complete and accurate Modelica model is constructed

using SysML, a corresponding profile is proposed to enrich

SysML models with simulation-specific capabilities, utiliz-

ing component constraints and parametric diagram to

model system behavior as mathematical equations.19

The definition of a SysML4Modelica profile has been

endorsed by the OMG.20 The profile enables the annota-

tion of SysML models with Modelica properties and their

simulation in a Modelica simulation environment, utilizing

model libraries when available. Operational QVT language

is adopted to transform SysML models to Modelica mod-

els. Corresponding specifications and tools have recently

become available for usage by the community.

The aforementioned approaches are suited for system

domains simulated using models with continuous beha-

vior. However, simulation of discrete event systems is also

feasible based on SysML system models, where system

behavior is described in activity, sequence or state dia-

grams. In the study by McGinnis and Ustun,10 system

models defined in SysML are translated to be simulated

using Arena software. SysML models are not enriched

with simulation-specific properties, while emphasis is

given to system structure rather than system behavior.

MDA concepts are applied to export SysML models from

a UML modeling tool and, consequently, transform into

Arena models, which should be enriched with behavioral

characteristics before becoming executable. This may be

accomplished by the system engineer either with the use

of existing model libraries within the Arena tool, or with

Arena-specific simulation code composition. In the study

by Batarseh and McGinnis,34 the SysML4Arena profile

was introduced for the specification of system models that

are exported and transformed via ATL to Arena simulation

models. This approach emphasizes domain-specific lan-

guages and existing library components.

In the study by Wang and Dagli,17 the utilization of

Colored Petri Nets is proposed to simulate SysML models.

If the system behavior is described using activity and

sequence diagrams in SysML, it may be consequently

simulated using discrete event simulation via Petri Nets.

However, none of the aforementioned approaches, tar-

geting discrete event simulation, supports the fully auto-

mated generation of simulation code, executed in the

corresponding simulation environment, especially when

model libraries are not available. Most of them adopt the

definition of a simulation-related profile to enrich SysML

models with properties necessary to simulate them accord-

ing to the adopted simulation methodology,10 especially in

cases where model behavior is described in SysML.17

Moreover, adoption of model transformation tools based

on MDA to produce simulation models from SysML

system models, gains momentum. The main hinder for

implementing such an approach is the lack of standard

meta-models for simulation methodologies.

720 Simulation: Transactions of the Society for Modeling and Simulation International 90(6)

 at Harokopio University on June 3, 2014sim.sagepub.comDownloaded from

http://sim.sagepub.com/

2.2. DEVS framework and tools

DEVS models can be simulated in a series of appropriate

simulation environments. However, executable DEVS

models cannot be derived from pre-existing system models

and in most cases they have to be defined in terms of code,

independently of the system model.

According to DEVS formalism,23 mathematical sets are

introduced to describe the structure and behavior of a

model. Models are specified in a modular and hierarchical

form, while two types of them are defined: atomic models,

focusing on behavioural aspects, and coupled models,

focusing on structural aspects, thus expressing how atomic

and other coupled models are connected in a hierarchical

form to build more complex structures.9

Each atomic model is described as:

� a set of input ports for receiving external events
� a set of output ports for sending external events
� a set of state variables and parameters, used for

model states’ definition
� an internal transition function (deltint), which speci-

fies the next state to which the system will transit
� an external transition function (deltext), which spe-

cifies the next system state when an input is

received, computed on the basis of the present

state, the elapsed time, and the content of the exter-

nal input event
� an output function (lambda), which generates an

external output just before an internal transition

occurs if required
� a time advance function (ta), which controls the

timing of internal transitions.

A coupled DEVS model contains:

� a set of components
� a set of input and output ports
� an external coupling, connecting the input/output

ports of the coupled model to one or more input/

output ports of its components
� an internal coupling, connecting output ports of the

components to input ports of other components

There is a variety of DEVS simulators developed by dif-

ferent groups. In practice they all provide a set of libraries

to be used in C++ or Java languages. As they are inde-

pendently developed, the need for interoperability between

them arises. Thus, many DEVS simulation environments

aim at the definition of XML-based DEVS model descrip-

tion and their corresponding interpretation in different pro-

gramming languages.26,28,29,35,36 An XML data

encapsulation was accomplished by Hosking and Sahin,35

within the DEVS environment, as a unifying communica-

tion method among the entities in any Systems-of-Systems

(SoS) architecture. In the study by Mittal et al.,36 the prob-

lem of model interoperability was addressed, introducing

DEVSML. The composed coupled models are then vali-

dated using atomic and coupled document type definitions

(DTDs). In this case, model behavior is not emphasized.

In any case, executable models are either in C++ or

Java. The proposed XML representations focus on low-

level description of executable DEVS code, including lan-

guage commands and variable value assignments. As

reported by Meseth et al.,26 XLSC DEVS was introduced

as an XML language for modeling atomic and coupled

DEVS models. It was shown that (a) XLSC can express a

model’s behavior as well as its structure, and (b) an XLSC

model can be simulated. A prototype interpreter was

implemented in Java and employed to directly execute the

model. In this case, atomic model behavior can be

described in XML using a series of low-level, yet pro-

gramming language independent actions, denoting specific

instructions.

In the study by Risco-Martı́n et al.,28 DEVS-XML was

proposed as a platform-independent, XML-based format

for describing DEVS models. DEVS-XML is consequently

transformed into executable code for existing DEVS simu-

lators, using translators, such as the ones proposed for a

DEVSJava simulator,28 which was only implemented for

DEVS coupled models. Thus, DEVS behavior transforma-

tion is missing. DEVS-XML was proposed to establish

DEVS model mobility and promote interoperability

between discrete DEVS simulators, independently of the

programming language they are implemented in and the

way they operate (either in a distributed or centralized

fashion). However, there are not many tools supporting it

yet. Among them, the one reported by Risco-Martı́n et al.

is the most advanced,29 and is currently used to transform

DEVSJava code into XML and vice versa, for a subset of

DEVS formalisms, FD-DEVS.37 The latter DEVS-XML

version is referred as XFD-DEVS and offers XSD defini-

tions along with a tool for the transformation.

DEVS-XML offers an upper level representation of

DEVS behavior based on system state transitions, compa-

tible to SysML state machine diagrams. Thus, its adapta-

tion as an intermediate DEVS representation format was

explored. A few issues were raised. First, DEVS-XML

does not incorporate the relationship between state vari-

able values and states. Second, in order to be implementa-

tion independent, DEVS-XML is quite general and,

therefore, does not handle complex expression values in a

specific manner. Third, DEVS-XML is -as implied by its

name- the specification of a flat XML representation for

DEVS models, rather than a meta-model for -conceptually

richer- DEVS models. Fourth, in DEVS-XML, XML attri-

butes are rarely used, leading to element explosion and

quite complex structure. Finally, actual testing and use of

DEVS-XML compliant tools is rather difficult.

Kapos et al. 721

 at Harokopio University on June 3, 2014sim.sagepub.comDownloaded from

http://sim.sagepub.com/

Therefore, there is a need for a standard representation

for DEVS models that is (a) consistent with DEVS theory,

(b) ready to be executed in DEVS simulation environ-

ments, and (c) compatible with SysML/UML meta-model,

(i.e. defined according to OMG’s MOF) to facilitate the

transformation of SysML to DEVS models using stan-

dards-compliant, existing tools. Such a meta-model may

take advantage of all the work already performed on XML

representations of DEVS models.

3. DEVSys Framework

Both SysML and DEVS are established and widely refer-

enced in the areas of system modeling and simulation,

respectively. In this context, the DEVSys framework is

defined for simulating SysML models using DEVS simu-

lators, provided that models are described in a way compa-

tible to the DEVS formalism. The system engineer

specifies his/her system model using SysML, via a UML

modeling tool and receives valid simulation results from

the execution of the corresponding DEVS model in a spe-

cific simulation environment. Thus, fully automated

DEVS simulation code generation is provided. An overall

perspective of the framework is depicted in Figure 1.

In order to enable simulation, the system engineer

should enrich SysML system models with DEVS-

compliant simulation information. This is enabled by the

proposed DEVS SysML profile, consisting of a set of

stereotypes and constraints. Stereotypes are employed to

characterize specific SysML model elements as DEVS-

related, used to create DEVS executable models.

Constraints restrict SysML models according to DEVS

formalism and validate their correctness and completeness

within the system modeling tool, so that they can be

automatically transformed to executable DEVS simulation

code. These activities constitute the first step of the pro-

posed process and are conducted using a UML modeling

tool, such as MagicDraw or Visual Paradigm, using

SysML and DEVS SysML profiles.

The SysML model defined in any standard UML mod-

eling tool may be exported in XMI format. The XMI rep-

resentation of models is used to ensure interoperability

between different modeling tools and is implementation

independent. This is the second step of the proposed

approach.

Since DEVS formalism is also supported by numerous

implementations, the SysML to DEVS model transforma-

tion includes an intermediate, yet autonomous and very

important step, which is the generation of a pure, imple-

mentation independent DEVS representation of the system

model, based on a DEVS MOF 2.0 meta-model. The exis-

tence of a DEVS meta-model independent of specific

simulators enhances the usability of the proposed approach

and facilitates simpler transformations for diverse simula-

tion environments, such as DEVSJava, cellDEVS, etc.

Therefore, such a DEVS MOF meta-model is introduced.

Transformation of DEVS enriched SysML models to

DEVS model representations is specified and implemented

using QVT. Specifically, QVT defines three transforma-

tion languages: QVT-Operational, QVT-Relations and

QVT-Core. In this case, QVT-Relations, a declarative lan-

guage for defining constraints on source and target model

elements, has been used. QVT transformations can be

applied on models that conform to MOF 2.0 meta-models

(SysML and the introduced DEVS meta-model in our

case). Object constraint language (OCL),38 another OMG

standard language for defining constraints, is integrated

and also extended in QVT with imperative features. This

constitutes the third step of the proposed approach.

The fourth step constitutes of the transformation of

DEVS models to executable code for specific DEVS simu-

lation environments and is feasible, since all DEVS related

information is contained in the DEVS models. However,

this transformation depends on the target simulation envi-

ronment and is implementation specific. In our current

implementation, XLSC DEVS was used as the simulation

environment.26 The simulator accepts as input DEVS

models described in XML and simulates them in a Java

environment.

From a software engineering perspective, according to

the concepts of MDA, for each real-world domain, two

kinds of discrete models should be defined: a PIM (plat-

form independent model), ensuring proper domain repre-

sentation, and PSMs (platform specific models),

corresponding to one or more executable versions of the

PIM. In the DEVS simulation domain, DEVS MOF

meta-model is used to define a PIM, and is consequently

translated into code executable on a variety of DEVS

simulators, such as XLSC, DEVSJava and DEVS/SOA,
Figure 1. DEVSys: Automated SysML model simulation using
DEVS.

722 Simulation: Transactions of the Society for Modeling and Simulation International 90(6)

 at Harokopio University on June 3, 2014sim.sagepub.comDownloaded from

http://sim.sagepub.com/

corresponding to PSMs. In the SysML modeling domain,

DEVS SysML profile is used to define SysML models

enriched with simulation capabilities. The SysML meta-

model and DEVS profile are used to define a PIM, while

discrete UML modeling tools internal representations cor-

respond to PSMs (see Figure 1).

From an implementation perspective, the DEVS SysML

profile and a corresponding application programming inter-

face (API) is implemented for MagicDraw,33 which is a

widely used UML modeling tool supporting SysML with a

user-friendly programming interface. SysML models being

enriched, using the DEVS SysML profile and exported in

XMI format are transformed into DEVS models (conform-

ing to the DEVS MOF meta-model) via a QVT model

transformation, that has been implemented for that purpose,

using Medini tool (http://projects.ikv.de/qvt/). As a proof

of concept, the last part of the transformation (code genera-

tion) has been implemented for XLSC DEVS execution

environment in terms of eXtensible Stylesheet Language

Transformations (XSLT).39 Although there is a single

DEVS SysML to DEVS transformation (defined with

QVT), usable in all cases, a distinct final transformation

would be required for each DEVS simulator that is

intended to be integrated in the framework. In any case, the

transformation from DEVS SysML to DEVS and the trans-

formations from DEVS to simulator-specific formats are

defined once and can be used for all system models in the

following.

Within DEVSys framework, the main contribution is

related to (a) the definition of the DEVS SysML profile

and the corresponding implementation for MagicDraw

modeling tool, (b) the definition of the DEVS MOF 2.0

meta-model, and (c) the definition and implementation of

the QVT transformation of DEVS SysML PIMs to DEVS

PIMs. An XSLT transformation of DEVS PIMs to XLSC

DEVS PSMs has also been implemented as a proof of

concept.

Additionally, the model-based nature of the approach

has a positive impact on the quality of the generated

executable simulation model. Since it is automatically

generated from the actual system model, syntactic errors

are eliminated, while semantic ones are more easily

avoided, due to the higher level provided for the specifica-

tion of model structure and behavior (compared to code

composition). Specification and implementation of the

above-mentioned framework elements are described in

the following sections.

To explore the steps of the proposed framework, a sim-

ple textbook example, widely used in DEVS literature, is

employed and discussed in the following sections. It con-

sists of a simple processor model and its experimental

frame (EF), indicating the conditions under which the pro-

cessor operates. The overall system is called EFP and is

described in Figure 2. The system consists of a processor,

which is an atomic DEVS model and the EF, coupled

DEVS model, consisting of a generator of requests directed

to the processor and a transducer collecting statistics. The

simplicity of the system enables the detailed description of

all the steps required from defining the system model using

SysML and converting the SysML model to executable

simulation code within the context of the paper.

4. DEVS SysML Profile

As indicated in Figure 1, system modelers initiate the pro-

cess of automated SysML model simulation by specifying

system models, enriched with simulation properties. DEVS

SysML Profile is the framework element that defines the

appropriate extensions and constraints for SysML models,

so that DEVS simulation capabilities are successfully inte-

grated into system models. Additionally, profile constraints

ensure system model validity and, therefore, minimize

inconsistencies in the derived simulation model and execu-

table simulation code.

In the study by Nikolaidou et al.,22 the notion of a

DEVS SysML profile has been introduced. In this section,

we present a detailed version of the profile, as it has been

extended and evolved to serve the implementation of the

proposed framework. The current version of DEVS

SysML profile is more fine-grained, depicting detailed

aspects of structural (ports, composition) and behavioral

(DEVS functions) elements and their relationships.

DEVS SysML profile has been implemented in

MagicDraw modeling tool. Proposed stereotypes are

defined using standard tool interface, while constraints are

implemented using OCL, model customization and the

API provided. To better understand DEVS-related stereo-

types defined in the profile, similarities between SysML

and DEVS are outlined, before discussing profile defini-

tion and usage based on EFP example (Figure 2).

4.1. Similarities between SysML and DEVS

The main structural elements of system description in

SysML are blocks, which may contain value properties

(variables), part properties (other contained blocks), refer-

ence properties (references to other blocks), ports, used as

the endpoints of inter-block connections, and constraints,

Figure 2. EFP DEVS model.

Kapos et al. 723

 at Harokopio University on June 3, 2014sim.sagepub.comDownloaded from

http://sim.sagepub.com/

indicating relations between block properties. Ports facili-

tate sending or receiving events (standard ports) or data

items (flow ports).

System structure is defined via block definition dia-

grams (BDDs), internal block diagrams (IBDs), and para-

metric diagrams (PDs). BDDs provide an overall

hierarchical representation of system structure and compo-

sition. IBDs focus on composite block internal description,

where component block relations are specified. Although

BDDs define the sub-components of a block, an IBD

defines how these components are interconnected through

ports. PDs bind specific block properties to block con-

straint variables, enabling -this way- constraint verification

and/or enforcement.

System behavior is described using State Machine

Diagrams (SMD) (defining block states and state transi-

tions), activity diagrams (AD) (emphasizing on the actions

performed by blocks), sequence diagrams (SD) (emphasiz-

ing on synchronization of block actions and produced or

received events) and use case diagrams (UC) (describing

use cases of the blocks). Finally, the requirement diagram

(RD) is introduced to define system requirements. As

reported by Nikolaidou et al.,22 we have identified a set of

correspondences between DEVS and SysML modeling

elements. Coupled and atomic DEVS models correspond

to SysML blocks, while DEVS ports correspond to SysML

flow ports. DEVS state variables correspond to SysML

block value properties, while SysML constraints may be

used to depict the way state variables are interrelated to

indicate system states. DEVS coupled model description,

i.e. component models interconnection, is similar to the

SysML IBD diagram, corresponding to each composite

block. DEVS coupled component models can be expressed

as SysML part blocks. In both cases, either part blocks or

coupled model component communication is depicted

using connections between input and output ports.

However, simulation execution depends on model beha-

vior, apart from system information and structure.

Therefore, atomic DEVS functions should be expressed in

terms of SysML. Internal transition function defines state

transitions, making SMD as the evident selection for this

purpose. Additional characteristics of SMDs, such as dura-

tion guard conditions and effects on state transitions, make

this diagram type appropriate for defining output and time

advance functions, as well. Nevertheless, these functions

are strongly related to states and state transitions. On the

other hand, external transition functions are triggered by

external events and result in state and/or variable modifica-

tion. This could be clearly described in activity diagrams.

Table 1 illustrates the correspondence between DEVS

and SysML entities. The structure of a system in both

SysML and DEVS is defined in a similar fashion, allowing

the mapping between SysML and DEVS models.22 DEVS

profile should emphasize on DEVS atomic model

behavior, utilizing State Machine, Activity and Parametric

diagrams.

4.2. DEVS SysML profile diagrams

The formal method proposed by the OMG for extending or

restricting SysML/UML, so that a specific domain, such as

DEVS formalism, may be effectively modeled, is the defi-

nition of stereotypes grouped by means of a profile.4 Using

DEVS specific stereotypes for SysML behavior diagrams,

their functionality can be restricted to conform to DEVS

formalism (e.g. the description of DEVS atomic model

functions). Such a profile must facilitate the following:

� Ensure that the structure of system models defined

in BDDs and IBDs contain all necessary informa-

tion to simulate them using DEVS. This may be

accomplished by specific constraints checking the

ports and properties, defined for system blocks par-

ticipating in BDDs and IBDs to ensure that all

DEVS related information is provided.
� Provide the means to characterize specific blocks as

DEVS atomic models and provide DEVS SysML

diagrams to describe DEVS functions used to

define the behavior of atomic simulation models.

4.2.1. DEVS coupled model. DEVS models can be specified

only in SysML system models described using BDDs.

System blocks (with unidirectional ports) can be identified

as DEVS blocks and categorized as either DEVS Coupled

or DEVS Atomic blocks. A DEVS Coupled block consists

of a set of other blocks (atomic or coupled) and a coupling

element, expressed as an internal block diagram (IBD).

The SysML block diagram corresponding to the EFP

Table 1. Mapping between DEVS formalism and SysML entities.

DEVS formalism SysML entity

Atomic and coupled
model

Block

Input port Flow port with ‘in’ direction
Output port Flow port with ‘out’ direction
Atomic model Block
State variables Value properties and constraints
Parameters Value properties
DEVS atomic model
functions

Behavior diagrams

(deltint, deltext, lambda, ta) (State machine, activity)
Coupled model Internal block diagram
Component models Block parts
Internal coupling Connectors between flow ports

of IBD’s parts
External coupling Connectors between flow ports

of the IBD’s enclosing block and
its parts

724 Simulation: Transactions of the Society for Modeling and Simulation International 90(6)

 at Harokopio University on June 3, 2014sim.sagepub.comDownloaded from

http://sim.sagepub.com/

model of Figure 2 is depicted in Figure 3. It consists of the

processor and the ef block. The latter consists of a genera-

tor and a transducer block. Constraints, properties and

ports are shown for each block. All blocks are annotated

by either DEVS Coupled or DEVS Atomic stereotypes. So

far, no specific DEVS-related entities are defined.

The coupling of a DEVS Coupled block defines the

interconnections between (a) the ports of part blocks

(internal connections) and (b) the ports of the container

DEVS Coupled block and its parts (external connections).

All this information is included in the corresponding

SysML IBD. When the SysML block is characterized as a

DEVS Coupled block, related DEVS structural constraints,

as defined in Table 2, are applied to ensure that all cou-

plings between container and part block port are properly

defined. The IBD in Figure 4 shows port interconnection

for contained blocks of the ef complex system (coupled

model). No specific DEVS stereotypes are used to describe

system model. Thus, DEVS Coupled block constraints are

applied to ensure that all necessary port connections are

defined.

4.2.2. DEVS atomic model. DEVS-related entities should be

defined for any SysML block characterized as DEVS

Atomic block, by applying the corresponding stereotype, in

order to describe simulation model behavior. To describe

atomic model behavior, system states and the four related

functions, namely deltint, deltext, lambda, and ta, should

be defined. When the DEVS Atomic stereotype is applied

on a system block in a BDD diagram, DEVS structural

constraints are also applied to the specific block to ensure

the definition of DEVS ports and state variables.

Figure 3. EFP SysML block definition diagram.

Table 2. DEVS model structural stereotypes.

DEVS stereotype SysML entity Constraints

DEVS model Block
definition diagram

There is one BDD containing the overall model.
Only DEVS Coupled and DEVS Atomic entities participate in this diagram.

DEVS Coupled Internal block A DEVS Coupled Internal Diagram must be associated to any DEVS Coupled.
internal diagram diagram The diagram may only contain the DEVS models directly used by the

corresponding DEVS Coupled.
All flow ports must be connected in an appropriate manner (output to input flow
port).

DEVS Coupled Block A DEVS Coupled may only have property parts and unidirectional (in/out) flow
ports.
Every DEVS Coupled is associated to a DEVS Coupled Internal Diagram.

DEVS Atomic Block A DEVS Atomic may only have unidirectional (in or out) flow ports, value
properties and constraints on the value properties.
Four sub-diagrams must be associated to each DEVS Atomic to describe its
behavior: DEVS States Definition, DEVS States Association, DEVS Atomic
Internal and DEVS Atomic External.

Kapos et al. 725

 at Harokopio University on June 3, 2014sim.sagepub.comDownloaded from

http://sim.sagepub.com/

Table 2 contains DEVS SysML stereotypes, SysML/

UML entities on which they are applied, and constraints,

regarding model structure for the definition of DEVS

Coupled and Atomic blocks.

DEVS Atomic model behavior is defined as transitions

between discrete model states.9 Thus, a set of states and

simulation model behavior must be described for any

DEVS Atomic block, using a series of diagrams and the

corresponding DEVS stereotypes. For this purpose, four

sub-diagrams must be related to each Atomic DEVS

Block. Two of them facilitate state definition and the other

two function definition:

� DEVS State Definition Model: A SysML constraint

BDD defining constraints, each of them denoting a

possible system state.
� DEVS State Association Model: A PD that facili-

tates state definition based on the constraints of the

previous DEVS State Definition Model. The states

(constraints) are formed from their association with

state variables (value properties).
� DEVS Atomic Internal Model: A SMD facilitating

the definition of internal transition function, output

function and time advance function.
� DEVS Atomic External Model: An AD facilitating

the definition of external transition function.

The processor Atomic Block (see Figure 3) is presented in

the following to discuss how Atomic Blocks are modeled.

It receives a job number (FlowPort in), processes it and

finally outputs the job number (FlowPort out). The block

is described by four properties, namely e, job, phase, and

sigma, which may be used as DEVS state variables, as dis-

cussed in the following. Property type and initial values

are also defined in a standard SysML fashion. As shown

in the Figure 3, constraints are also defined for processor

Atomic Block. They relate to DEVS state definition and

are also discussed in the following.

4.2.3. DEVS State Definition and Association. DEVS atomic

model behavior is described as transitions between valid

states, thus, state definition for each DEVS Atomic block

should be facilitated. Each state can be considered as a

combination of state variable values, while state variables

are defined as block value properties. Thus, the state vari-

able value properties are associated to the DEVS State con-

straints in the corresponding SysML PD. DEVS states are

defined in the DEVS State Definition Model as DEVS State

constraints and are further explained as combinations of

state variable values in the DEVS State Association Model.

The latter, a stereotype of the PD, is used to show the con-

straint each DEVS State enforces on State Variable values.

Table 3 contains related DEVS SysML stereotypes, corre-

sponding SysML entities and constraints.

As an example, states definition of processor block is

presented in Figure 5. The processor is either idle or busy.

The corresponding state variable, named phase, is intro-

duced and associated with the state constraints in the

DEVS State Association Model of Figure 6. Defined as a

value property of processor block, it is characterized as

state variable, once added in DEVS State Association

Model. It may be assigned to one of either two values:

idle, busy.

As shown in Figure 5, state variables are represented as

constraint blocks in DEVS State Definition Model. Each

state variable is associated with one or more parameters (s)

used to define it.

Table 3. DEVS state definition stereotypes.

DEVS stereotype SysML entity Constraints

DEVS states definition Block definition diagram It must be associated to a DEVS Atomic Block. The diagram may only
contain DEVS State Constraints.

DEVS states association Parametric diagram It must be associated to a DEVS Atomic Block. The diagram contains the
block’s value properties, the DEVS State Constraints (defined in DEVS
States Definition Diagram) and their interconnection. Each constraint
parameter must be connected to a value property.

DEVS State Constraint It may have as many parameters as the number of state variables. The type
of each parameter must be compatible to a subset of the state variable’s
type. The value of each parameter must be constrained.

Figure 4. EF SysML internal definition block.

726 Simulation: Transactions of the Society for Modeling and Simulation International 90(6)

 at Harokopio University on June 3, 2014sim.sagepub.comDownloaded from

http://sim.sagepub.com/

The corresponding DEVS State Association Model,

indicates the exact way these parameters are associated

with corresponding value properties characterized as state

variables. As shown in Figure 6, the s parameter of DEVS

State constraint busy is associated to the phase value prop-

erty of the processor atomic DEVS block. Consequently,

discrete processor states could automatically be inserted in

DEVS Atomic Internal and DEVS Atomic External dia-

grams defining DEVS atomic model functions.

4.2.4. DEVS Atomic Internal Model. The DEVS Atomic

Internal Model of a DEVS Atomic block specifies the

behavior of the atomic DEVS model in case of internal

state transition. Therefore, it is declared as a stereotype of

state machine diagram (SMD), where DEVS Internal

Transitions between the DEVS States, already defined in

DEVS State Definition Model, occur at predefined Time

Advances and may produce DEVS Output to some of the

output ports of the atomic block. In DEVS, an internal

transition function specifies the next state to which the

system will transit. DEVS states are computed based on

DEVS State Definition Model and are automatically

inserted in DEVS Atomic Internal Model. The system

modeler specifies DEVS Internal Transitions by inserting

DEVS State Transitions between DEVS States. Output

function generates an external output just before an inter-

nal transition occurs and Time Advance function controls

the timing of internal transitions. The initial state is deter-

mined by the initial values of each state variable.

The DEVS Atomic Internal Model for processor block

is depicted in Figure 7. Atomic model processor changes

its state from busy state to idle (as defined by DEVS

Internal Transition represented as a state transition) after

3.5 seconds (as defined by Time Advance, represented as

Timing Condition of the corresponding transition). It also

produces output, as indicated by transition effect represent-

ing DEVS Output. Specifically, job number is assigned to

out output port. Table 4 contains related stereotypes and

constraints. As there is no outgoing transition from idle

state, this state can change only in the occurrence of an

external event.

4.2.5. DEVS Atomic External Model. The DEVS Atomic

External Model of a DEVS Atomic block specifies its

behavior in case of external state transition caused by the

arrival of a specific input. It is declared as a stereotype of

activity diagram (AD), where possible DEVS States and

DEVS Input are combined. Each combination results in a

set of actions, where (simple or state) variables of the

atomic block may be modified. This function is executed

whenever an input event arrives at the atomic DEVS

model, e.g., an input port receives a specific value.

Therefore, there is a condition (of stereotype DEVS Input)

for every distinct value received by an input flow port of a

DEVS Atomic block. The corresponding actions (of

stereotype DEVS Variable Modification) are also deter-

mined by the state of the atomic DEVS model at the time

of the arrival of the input event. Thus, initially there is a

DEVS State Var Check decision node, checking current

state variable values and creating different control flows.

Corresponding stereotypes and constraints reside in

Table 5. The DEVS Atomic External Model for processor

block is depicted in Figure 8, as the working diagram of

the corresponding MagicDraw screen shot. As shown in

the figure the stereotypes corresponding to this diagram

Figure 5. Processor DEVS state definition model.

Figure 6. Processor DEVS state association model.

Figure 7. Processor DEVS atomic internal model.

Kapos et al. 727

 at Harokopio University on June 3, 2014sim.sagepub.comDownloaded from

http://sim.sagepub.com/

may be used from the palette. Input must be received from

the in port and at the same time the state must be idle.

This results in modifying the state to busy. If one of these

conditions is not satisfied, nothing happens. This example

shows that different input and state combinations result in

distinct new model states. Execution of external transition

for each received event does not consume any simulation

time.

4.3. DEVS SysML profile diagram

The corresponding class diagram of the proposed DEVS

profile for SysML is depicted in Figure 9. DEVS formal-

ism entities are depicted as stereotypes of SysML entities.

Associations between entities included in the class dia-

grams are aggregations (as in the case of DEVS states

defining a DEVS Internal Transition), compositions (as in

the case of DEVS Model composed of DEVS blocks),

generalizations (as in the case of DEVS Coupled block

defined as a descendant of DEVS block) and generic asso-

ciations, where textual description is given. Multiplicity

constraints are also used. All DEVS SysML stereotypes

defined, their properties and the relations between them

are included in the system models exported in XMI format

from MagicDraw modeling tool, since extensions are

defined in a standardized fashion.

5. SysML to DEVS Model Transformation

Having defined the DEVS SysML profile, construction of

system models with simulation characteristics that can be

exported in XMI format is feasible. DEVS SysML models

comply with the UML2 meta-model, which is a quite gen-

eral meta-model that can be used for modeling a variety of

artifacts, systems, processes, etc. This means that, although

we focus on the DEVS-related information within the

Table 4. DEVS atomic internal stereotypes.

DEVS stereotype SysML entity Constraints

DEVS atomic
internal model

State machine
diagram

The diagram must be associated to a DEVS Atomic Block.
The diagram contains an initial node, the DEVS States as derived from DEVS
State Definition Diagram, transitions from state to state and notes indicating
Time Advance.

DEVS state State Each state must be defined as a state constraint in the DEVS State Definition
Diagram of the same DEVS AM.

DEVS internal
transition

State transition Only one transition may start from any single state node.

DEVS OutFn DEVS internal
transition

The action body of the transition has value assignments to the output flow ports
of the DEVS Atomic Block.

DEVS Ta Note The DEVS Ta note is associated to a DEVS Internal Transition state transition.
The note contains the mathematical function describing advancement of time
describing Ta.

Table 5. DEVS atomic external stereotypes.

DEVS stereotype SysML entity Constraints

DEVS atomic external model Activity diagram It must be associated to a DEVS Atomic Block.
The diagram contains an initial node, a DEVS State Check,
DEVS In Ports (equal to the block’s input ports), DEVS
State Forks, DEVS State Input Joins, DEVS State
Modification Actions and final nodes.

DEVS state check Decision node The guard conditions starting from this node check state
variables and end at DEVS State Forks or DEVS State
Input Joins.

DEVS in ports Parameter May only connect to a DEVS State Input Join.
DEVS state forks Fork/Join Is connected to one or more DEVS State Input Joins.
DEVS state input joins Fork/Join Is connected to a DEVS State Modification Action or a

final node.
DEVS state modification actions Action The Action assigns a value at a value property of the block.

Is connected to another DEVS State Modification Action
or a final node.

728 Simulation: Transactions of the Society for Modeling and Simulation International 90(6)

 at Harokopio University on June 3, 2014sim.sagepub.comDownloaded from

http://sim.sagepub.com/

DEVS SysML profile, the entities of the models contain

large amounts of information that is irrelevant to DEVS-

oriented simulation. Therefore, XMI representations of

SysML models, exported from MagicDraw tool, are very

large and cumbersome to be directly used for DEVS simu-

lation code generation.

According to DEVSys framework (Figure 1), the next

step towards model simulation is the transformation of a

SysML PIM described in XMI to a DEVS PIM. In the

sense of standardizing the way DEVS models should be

specified, independently of how they were constructed

(e.g. DEVS SysML models, DEVS visual tools), there is a

need to use a DEVS meta-model in terms of a standard

meta-modeling facility. Such a facility is MOF, which is

provided as a standard by the OMG. Such a meta-model

could be used by any standard model transformation tool

to define a QVT transformation between SysML and

DEVS models represented in XMI, since QVT is a stan-

dard set of languages for model transformation from a

MOF meta-model to another MOF meta-model.

5.1. DEVS MOF meta-model

Although several DEVS-XML representations are avail-

able, none of them is based on a MOF meta-model. After

reviewing several DEVS-XML representations discussed

in Section 2, we have defined the DEVS MOF meta-

model, based on the DEVS-XML version proposed by

Risco-Martı́n et al.28

The DEVS MOF meta-model is schematically pre-

sented in Figure 10, as a UMLClass Diagram. It contains

elements defining structural and behavioral aspects of

DEVS atomic (ports, states, internal transition, output,

time advance, and external transition functions) and

coupled components (ports and coupling). DEVS model

structure for both coupled and atomic models is defined in

a similar fashion, as proposed by Risco-Martı́n et al.28

DEVS model behavior, e.g. DEVS Atomic model func-

tions are described based on system state transitions, also

in accordance to DEVS-XML. However, the definition of

systems states based on state variables is also included in

the proposed meta-model, facilitating the usage of both

Figure 8. Processor DEVS atomic external model.

Kapos et al. 729

 at Harokopio University on June 3, 2014sim.sagepub.comDownloaded from

http://sim.sagepub.com/

state variables and system states to describe behavior func-

tions depending on the simulator used.

Most of the composition associations of the DEVS

MOF meta-model class diagram are not named. This

implies that the name of the component entity class is used

to reference the entity in the context of the composite

entity class. This keeps the diagram simpler. However, in

cases where the same class is used for two distinct compo-

nents of an entity (e.g. input and output ports), a distinct

name is used for each composition.

It should be noted that the definition of CONDITION

and VALUE classes is recursive. For example, a VALUE

entity may be composed by one or more other VALUE

entities. This is useful and allowed only when an operation

is specified, so that a complex expression may be declared

(e.g. V1+V2). In the case of CONDITION, AND or OR

sub-conditions are allowed, to declare complex conditions

(e.g. C1 AND C2).

Compared to DEVS-XML,28 the proposed DEVS MOF

meta-model incorporates the relation between state vari-

able values and states. This feature enables the execution

of the corresponding DEVS model using a wider variety of

DEVS simulators, either implemented in C++ or Java. It

also handles complex expression values, utilizing Value

class, used to construct state conditions and state variable

updates, and provides simpler structure and conceptual

coherence. Complex typed values can be supported by seri-

alizing them in the String value property, but this aspect

has not been extensively exploited so far. These features

enhance the meta-model descriptiveness and ease its trans-

formation to executable DEVS code. Therefore, DEVS

MOF meta-model presented here establishes a standard,

solid foundation for defining DEVS models.

In practice, the proposed DEVS meta-model is defined

in terms of MOF elements, so that it can be used within

model manipulation tools (i.e. for model transformation),

such as the Medini tool.

5.2 Model transformation with QVT

A transformation from UML meta-model, including

SysML and DEVS profiles, to the DEVS meta-model is

required to convert system models defined in SysML to

DEVS models. QVT is an appropriate standard for defin-

ing such a transformation, as its main purpose is to define

the correspondence and transformation between two meta-

models. A set of QVT relations between concepts of

DEVS SysML and DEVS MOF meta-models, that

Figure 9. DEVS SysML profile diagram.

730 Simulation: Transactions of the Society for Modeling and Simulation International 90(6)

 at Harokopio University on June 3, 2014sim.sagepub.comDownloaded from

http://sim.sagepub.com/

Figure 10. DEVS MOF meta-model.

Kapos et al. 731

 at Harokopio University on June 3, 2014sim.sagepub.comDownloaded from

http://sim.sagepub.com/

implement a transformation of models from the first to the

second, have been defined. The use of QVT relations for

querying the DEVS SysML model facilitates the detection

and exploitation of simulation enabled elements, based on

their stereotypes and relationships with other elements,

regardless of the number and complexity of SysML model

diagrams. An Eclipse-based QVT tool (Medini) has been

successfully used for the execution of the QVT transfor-

mation for various DEVS SysML models.

The transformation from DEVS SysML models (left

side) to DEVS models (right side) is outlined in Figure 11,

providing a schematic representation of the transformation

by indicating the correspondence between parts of the two

meta-models. Detailed aspects of both meta-models (pre-

sented in Figures 9 and 10) have been omitted to simplify

the combined representation. The numbered arrows, denot-

ing several parts of the transformation, are described in the

following (no particular order is denoted):

1. Model transformation: The topmost part of the

transformation. The DEVS SysML model (UML2

entity) contains all DEVS ATOMIC and DEVS

Coupled blocks, which are located here, in order to

be transformed into DEVS_ATOMIC and

DEVS_COUPLED DEVS entities. It is implemen-

ted by a QVT relation, which finds all models in the

DEVS SysML model (normally there will be only

one) and creates a DEVS MODEL for each one. At

this point, relations AtomicBlock2DevsAtomic and

CoupledBlock2DevsCoupled are applied to each

model, so that all DEVS components are identified

and transformed.

2. DEVS common elements transformation: This part

transforms elements that are common in atomic

and coupled DEVS models, i.e. model name and

input/output ports.

3. DEVS atomic state definition transformation:

Transforms the DEVS State Constraint blocks that

define the state set.

4. DEVS atomic state variable definition transforma-

tion: Transforms the DEVS State Variable value

properties to DEVS State Variables.

5. DEVS atomic state association transformation:

Transforms the DEVS State Association Model to

conditions attached to state set values.

6. DEVS atomic internal model transformation:

Transforms the DEVS Atomic Internal Model (State

Machine Diagram) to Internal Transition Function,

Output Function and Time Advance Function.

7. DEVS atomic external model transformation:

Transforms the DEVS Atomic External Model

(Activity Diagram) to External Transition Function.

8. DEVS coupled components transformation:

Transforms the Component composition associa-

tions to the component reference list.

9. DEVS coupled coupling transformation:

Transforms the port connections of the Internal

Block Diagram to External Input Coupling,

External Output Coupling and Internal Coupling.

According to Figure 11, DEVS Atomic Internal Model

transformation corresponds to arrow 6. DEVS Atomic

Internal Model defined as a stereotype of a UML2 State

Machine diagram is transformed to INTERNAL_

TRANSITION_FUNCTION, OUTPUT_FUNCTION and

TIME_ADVANCE_FUNCTION entities of the DEVS

meta-model, representing related DEVS functions. Each

of them is constructed using information included in the

corresponding State Machine diagram. The QVT relations

proposed for this part of the transformation are included in

Appendix A.

The part of the model that is generated by the SysML-

to-DEVS transformation of the Processor DEVS Atomic

Internal model (presented in Figure 7), is presented in

Code Listing 1, in XMI format.

Transitions are used to define all functions.

CONDITIONAL_FUNCTION elements are described by

the origin state, while TRANSITION_FUNCTIONS corre-

sponding to a CONDITIONAL_FUNCTION are described

by the destination state. In the case of

 <NEW_STATE text="idle"/>
 <STATE_VARIABLE_UPDATES>
 <STATE_VARIABLE_UPDATE name="job">
 <VALUE value="Integer(-1)"/>
 </STATE_VARIABLE_UPDATE>
 </STATE_VARIABLE_UPDATES>
 </TRANSITION_FUNCTION>
 </CONDITIONAL_FUNCTION>

</INTERNAL_TRANSITION_FUNCTION>
<OUTPUT_FUNCTION>
 <CONDITIONAL_OUTPUT_FUNCTION>
 <STATE_CONDITION text="busy">
 <SEND port="out">
 <STATE_VARIABLE_VALUE name="job"/>
 </SEND>
 </STATE_CONDITION>
 </CONDITIONAL_OUTPUT_FUNCTION>

</OUTPUT_FUNCTION>
<TIME_ADVANCE_FUNCTION>
 <CONDITIONAL_TIME_ADVANCE>
 <STATE_CONDITION text="busy"/>
 <TIME_ADVANCE>
 <VALUE type="Real" value="3.5"/>
 </TIME_ADVANCE>
 </CONDITIONAL_TIME_ADVANCE>
 <CONDITIONAL_TIME_ADVANCE>
 <STATE_CONDITION text="idle"/>
 <TIME_ADVANCE>
 <VALUE type="Real" value="Infinity"/>
 </TIME_ADVANCE>
 </CONDITIONAL_TIME_ADVANCE>

</TIME_ADVANCE_FUNCTION>

Code Listing 1. Processor DEVS atomic internal model functions
in XMI (according to DEVS MOF meta-model).

732 Simulation: Transactions of the Society for Modeling and Simulation International 90(6)

 at Harokopio University on June 3, 2014sim.sagepub.comDownloaded from

http://sim.sagepub.com/

Figure 11. DEVS SysML to DEVS transformation.

Kapos et al. 733

 at Harokopio University on June 3, 2014sim.sagepub.comDownloaded from

http://sim.sagepub.com/

INTERNAL_TRANSITION_FUNCTION element, a

STATE_VARIABLE_UPDATES element is also added to

indicate state variable modification, as indicated by DEVS

Var Modification Action associated to the Transition. In

the case of Processor system (Figure 7) the state variable

Job, of type integer, is decreased by 1.

6. DEVS Code Generation and Execution

According to the DEVSys framework (Figure 1) and given

that a DEVS PIM is generated, as described in previous

sections, its transformation to an executable DEVS PSM

is the last step of the process. This is feasible, since all

necessary information for the DEVS PSM construction is

included in the DEVS PIM. To generate a platform-

specific DEVS representation, a specific DEVS simulation

environment must be selected, so that the proper transfor-

mation from DEVS models to the appropriate target for-

mat (XML, Java code, etc.) may be defined. The XLSC

DEVS platform was selected as the simulation environ-

ment,26 mainly due to the fact that it supports an XML

representation of the DEVS model to be simulated. The

DEVS PIM model (in XMI format) is syntactically trans-

formed to XLSC XML by an XSLT transformation. Since

the two formats have rather simple syntactical differences,

the XLSC XML file is constructed with the help of a set

of XSLT templates that match DEVS XMI elements, from

which the required values are retrieved and placed in the

XLSC elements. Figure 12 illustrates DEVS meta-model,

the general structure of XLSC XML, and the main steps

of the transformation between them.

The defined XSLT transformations are rather simple.

Details on them are provided in Appendix B. Generally,

DEVS model elements are transformed to the respective

XLSC elements. However, one should note that:

� In XLSC, there is no definition of the state set.

Only state variables are defined.
� In XLSC, all DEVS atomic functions (internal tran-

sition, output, time advance and external transition)

are defined in a low level, procedural manner.

Thus, they are not further analyzed in the figure. In

our XSLT transformation, we basically build the

procedural XLSC elements that implement the

behavior declared in the respective DEVS model

elements.
� Coupling is represented in a simpler and flat way in

XLSC. Couplings are not distinguished as internal

or external (input and output). For each coupling, a

source (component, port) and a target (component,

port) are specified. When the source or target com-

ponent is a DEVS coupled model, then the compo-

nent attribute is set to ‘‘this’’. Otherwise, the name

of the (component) DEVS model is used.

As an example, the XLSC equivalent of the processor

output function (Code Listing 1) is presented in Code

Listing 2. It is generated as the result of DEVS-to-XLSC

transformation on the DEVS XMI representation of the

output function.

The generated XLSC code is passed to the XLSC inter-

pretation environment that dynamically creates DEVSJava

classes for the atomic and coupled DEVS models. The

simulation model can be executed in DEVSJava simula-

tion environments. Figure 13 shows the execution of the

EFP model in the SimView DEVSJava component.

As reported by Kapos et al.,40 a varied version of the

framework that supports existing simulation library com-

ponents has been tested with more complex scenarios of

Enterprise Information System configurations.

7. Conclusions and future work

Generating simulation code in an automated fashion for

system models defined in SysML, may enhance system

design validation. In this paper, an integrated framework

called DEVSys was discussed that enables the transforma-

tion of system models defined in SysML to DEVS execu-

table models in a fully automated manner. To do so, the

properties of SysML system models are enriched with

simulation specific capabilities, in order to generate execu-

table simulation models, based on the DEVS formalism.

The proposed framework was tested to provide automated

generation of DEVS executable code for the XLSC DEVS

simulator. Each step was defined, implemented and

applied as well. Moreover, MDA concepts have been

widely adopted, rendering DEVSys an open, standards-

based and extensible framework. Hence, it may be further

applied using a variety of UML modeling tools and/or

DEVS simulation environments.

<outputFunction>
 <action>
 <if>
 <condition>
 <equal>
 <retrieve state="phase"/>
 <string>busy</string>
 </equal>
 </condition>
 <then>
 <output port="out" variable="item_nr">
 <retrieve state="job"/>
 </output>
 <send message="Item" port="out"/>
 </then>
 </if>
 </action>
</outputFunction>

Code Listing 2. Processor output function in XLSC XML.

734 Simulation: Transactions of the Society for Modeling and Simulation International 90(6)

 at Harokopio University on June 3, 2014sim.sagepub.comDownloaded from

http://sim.sagepub.com/

QVT with OCL were successfully employed to trans-

form SysML models to DEVS models represented in XMI,

based on the DEVS MOF meta-model. This meta-model

enables the transformation of DEVS models to executable

DEVS XLSC simulation code and, also, serves as the basis

for creation of DEVS PIMs that can be used by any

standard model transformation tool supporting QVT. This

way, generation of DEVS simulation models from system

models defined in any standard modeling language is

enabled. A simple example demonstrating the current ver-

sion of the framework’s implementation can be found at

http://galaxy.hua.gr/~gdkapos/DEVS_SysML_en.htm.

Figure 12. DEVS to XLSC transformation.

Kapos et al. 735

 at Harokopio University on June 3, 2014sim.sagepub.comDownloaded from

http://sim.sagepub.com/

Future work involves (a) applying the proposed frame-

work and related tools in a variety of real-world cases, (b)

combining the capability of the framework to define beha-

vioral aspects with selective use of existing, executable

simulation components, when they are available, (c) inte-

grating additional DEVS simulators in the framework, and

(d) providing additional capabilities within the DEVS pro-

file to enable the system engineer to integrate simulation

results within the SysML system model.

Acknowledgements

The authors would like to thank Nicolas Meseth, Patrick

Kirchhof, and Thomas Witte for their valuable help.

Funding

This research received no specific grant from any funding agency

in the public, commercial, or not-for-profit sectors.

References

1. Haskins C. INCOSE systems engineering handbook: a guide

for system life cycle processes and activities, version 3.

INCOSE-TP-2003-002-03, 2006.

2. Law AM. Simulation modeling and analysis. 4th ed.McGraw-

Hill Series in Industrial Engineering and Management

Science. McGraw-Hill, 2006.

3. Object Management Group (OMG). Systems Modeling

Language (SysML) specification, version 1.3. www.omg.

org/spec/SysML/1.3/PDF (2012).

4. Object Management Group (OMG). OMG Unified Modeling

Language (OMG UML), superstructure, version 2.4.1.

www.omg.org/spec/UML/2.4.1/Superstructure/PDF/ (2011).

5. Sarjoughian HS and Elamvazhuthi V. CoSMoS: a visual envi-

ronment for component-based modeling, experimental design,

and simulation. In: Proceedings of the 2nd international con-

ference on simulation tools and techniques for

communications, networks and systems, SimuTools 2009,

Rome, Italy, 2009, p.59.

6. Lee EA, Hylands C, Janneck J, et al. Overview of the

Ptolemy project. EECS Department, University of

California, Berkeley, CA, 2001. Report no. UCB/ERL M01/

11. www.eecs.berkeley.edu/Pubs/TechRpts/2001/3947.html.

7. Lee EA. Ptolemy project vision. Presented at the 8th

Biennial Ptolemy Miniconference. http://chess.eecs.berke-

ley.edu/pubs/550.html (2009).

8. Mathworks. Matlab and Simulink. www.mathworks.com

(2011).

9. Zeigler BP, Praehofer H and Kim T. Theory of modeling and

simulation. 2nd ed.Academic Press, 2000.

10. McGinnis L and Ustun V. A simple example of SysML-dri-

ven simulation. In: Proceedings of the 2009 winter simula-

tion conference, Austin, TX, pp.1703–1710. IEEE, 2009..

11. Schonherr O and Rose O. First steps towards a general

SysML model for discrete processes in production systems.

In: Proceedings of the 2009 winter simulation conference,

Austin, TX, pp.1711–1718. IEEE, 2009.

12. Huang E, Ramamurthy R and McGinnis LF. System and

simulation modeling using SysML. In: WSC’07: proceedings

of the 39th winter simulation conference, Piscataway, NJ,

pp.796–803. IEEE Press, 2007.

13. Peak RS, Burkhart RM, Friedenthal SA, et al. Simulation-

based design using SysML. Part 1: A parametrics primer. In:

INCOSE international symposium, San Diego, CA, 2007,

pp.1–20.

14. Peak R, Paredis CJJ and Tamburini DR. The composable

object (COB) knowledge representation: enabling advanced

collaborative engineering environments (CEEs), COB

requirements and objectives (v1.0). Atlanta, GA: Georgia

Institute of Technology, 2005.

15. Tamburini DR. Defining executable design and simulation

models using SysML. www.pslm.gatech.edu/topics/sysml/

(2006).

16. Paredis CJJ and Johnson T. Using OMG’s SysML to support

simulation. In: WSC’08: proceedings of the 40th winter simu-

lation conference,. 2008, pp.2350–2352.

17. Wang R and Dagli CH. An executable system architecture

approach to discrete events system modeling using SysML in

conjunction with colored Petri Nets. In: IEEE systems confer-

ence 2008, Montreal, pp.1–8. IEEE Computer Press, 2008.

18. Schamai W. Modelica modeling language (ModelicaML): a

UML profile for Modelica. http://urn.kb.se/resolve?urn=

urn:nbn:se:liu:diva-20553 (2009).

19. Kerzhner AA, Jobe JM and Paredis CJJ. A formal framework

for capturing knowledge to transform structural models into

analysis models. J Simul 2011; 5: 202–216.

20. Object Management Group (OMG). SysML–Modelica trans-

formation (SyM). www.omg.org/spec/SyM/1.0/PDF/ (2012).

21. Object Management Group (OMG). Model driven architec-

ture. Version 1.0.1. www.omg.org/cgi-bin/doc?omg/03-06-

01.pdf (2003).

22. Nikolaidou M, Dalakas V, Mitsi L, et al. A SysML profile

for classical DEVS simulators. In: Proceedings of the third

international conference on software engineering advances

(ICSEA 2008), Malta, pp.445–450. IEEE Computer Society,

2008.

Figure 13. EFP simulation execution in DEVSJava.

736 Simulation: Transactions of the Society for Modeling and Simulation International 90(6)

 at Harokopio University on June 3, 2014sim.sagepub.comDownloaded from

www.omg.org/spec/SysML/1.3/PDF
http://urn.kb.se/resolve?urn=urn:nbn:se:liu:diva-20553
http://sim.sagepub.com/

23. Zeigler BP and Sarjoughian HS. Introduction to DEVS modeling

and simulation with Java. DEVSJava Manual. www.acims.ari-

zona.edu/PUBLICATIONS/publications.shtml (2003).

24. Wainer GA and Giambiasi N. Timed Cell-DEVS: modelling

and simulation of cell spaces. In: Sarjoughian H and Cellier

F (eds) Discrete Event Modeling & Simulation: Enabling

Future Technologies. Springer-Verlag, 2001.

25. Zhang M, Zeigler BP and Hammonds P. DEVS/RMI – an

auto-adaptive and reconfigurable distributed simulation envi-

ronment for engineering studies. Int Test Eval Assoc J 2005;

27: 49–60.

26. Meseth N, Kirchhof P and Witte T. XML-based DEVS mod-

eling and interpretation. In: SpringSim ’09: proceedings of the

2009 Spring Simulation Multiconference, San Diego, CA,

pp.1–9. Society for Computer Simulation International, 2009.

27. Mittal S, Risco-Martı́n JL and Zeigler BP. DEVS/SOA: a

cross-platform framework for net-centric modeling and

simulation in DEVS unified process. Simulation 2009; 85:

419–450.

28. Risco-Martı́n JL, Mittal S, López-Peña MA, et al. A W3C

XML schema for DEVS scenarios. In: SpringSim ’07: pro-

ceedings of the 2007 spring simulation multiconference, San

Diego, CA, pp.279–286. Society for Computer Simulation

International, 2007.

29. Risco-Martı́n JL, De La, Cruz JM, Mittal S, et al. eUDEVS:

Executable UML with DEVS theory of modeling and simu-

lation. Simulation 2009; 85: 750–777.

30. Object Management Group (OMG). MOF 2 XMI mapping

specification, Version 2.4.1. www.omg.org/spec/XMI/2.4.1/

PDF/ (2013).

31. Object Management Group (OMG). Meta object facility

(MOF) core specification, Version 2.4.1. www.omg.org/

spec/MOF/2.4.1/PDF/ (2013).

32. Object Management Group (OMG). Meta object facility

(MOF) 2.0 query/view/ transformation specification, Version

1.1. www.omg.org/spec/QVT/1.1/PDF/ (2011).

33. No Magic Inc. SysML plugin for MagicDraw. No Magic Inc.

2007.

34. Batarseh O and McGinnis LF. System modeling in SysML

and system analysis in Arena. In: Proceedings of the 2012

winter simulation conference (WSC’12), pp. 258:1–258:12.

http://dl.acm.org/citation.cfm?id=2429759.2430107.

35. Hosking M and Sahin F. An XML-based system of systems

discrete event simulation communications framework. In:

SpringSim’09: Proceedings of the 2009 spring simulation

multiconference, 2009, pp.1–9. San Diego, CA: Society for

Computer Simulation International.

36. Mittal S, Risco-Martı́n JL and Zeigler BP. DEVSML: auto-

mating DEVS execution over SOA towards transparent

simulators. In: DEVS symposium, spring simulation multi-

conference, 2007, pp.287–295. ACIMS Publications.

37. Hwang MH and Zeigler BP. Reachability graph of finite and

deterministic DEVS networks. IEEE Trans Autom Sci Eng

2009; 6: 468–478.

38. Object Management Group (OMG). OMG object constraint

language (OCL), Version 2.3.1. www.omg.org/spec/OCL/

2.3.1/PDF/ (2012).

39. World Wide Web Consortium (W3C). Extensible stylesheet lan-

guage transformations (XSLT). www.w3.org/TR/xslt20 (2007).

40. Kapos GD, Dalakas V, Tsadimas A, et al. Model-based sys-

tem engineering using SysML: deriving executable simula-

tion models with QVT. In: IEEE systems conference 2014,

pp.531–538. IEEE Interactive Electronic Library (IEL),

IEEE Xplore, 2014.

Author biographies

George-Dimitrios Kapos is currently performing

research for his PhD thesis on automated validation of

system models via simulation at the Department of

Informatics and Telematics, Harokopio University of

Athens, Greece. In parallel, he works as an analyst and

software developer at the IT Department of the Greek

Consignment Deposit & Loans Fund, also participating in

efforts for realization of e-Government in Greece. He

obtained his BSc in Informatics and an MSc degree in

Advanced Information Systems, both with honors from

Informatics & Telecommunications Department, National

Kapodistrian University of Athens, Greece. His research

interests include model-based systems validation, simula-

tion, distributed-object systems dynamic behavior, and

distributed, heterogeneous databases homogenization.

Vassilis Dalakas obtained a BSc in Physics, a MSc

degree (honors) with specialization in digital signal pro-

cessing, and a PhD degree with specialization in digital

communications, all from the University of Athens (UoA),

Greece, in 1998, 2002, and 2010, respectively. Since

2001, he has been affiliated with the Harokopio

University of Athens (HUA), Greece, as a Research

Fellow (2001–2007 in the Department of Geography and

since 2008 in the Department of Informatics and

Telematics) and as a network and system administrator

since 2005. His research interests include wireless digital

communications for satellite and terrestrial system appli-

cations, digital signal processing techniques, as well as

modeling and simulation standardization methods. In these

areas, he has co-authored several papers, two book chap-

ters and was a co-recipient of the 2006 Best Paper Award

in Proceedings of the 15th International Conference on

Software Engineering and Data Engineering (SEDE).

Mara Nikolaidou is a Professor in the Department of

Informatics and Telematics at Harokopio University of

Athens. She holds a PhD and Bachelor degree on

Computer Science from Department of Informatics and

Telecommunications at University of Athens. Her research

interests include software and information system engi-

neering, service-oriented architectures, e-government, and

digital libraries. Over the last years she actively partici-

pated in numerous projects on service-oriented architec-

tures, digital libraries and e-government. She has

published more than 100 papers in international journals

and conferences.

Kapos et al. 737

 at Harokopio University on June 3, 2014sim.sagepub.comDownloaded from

www.omg.org/spec/XMI/2.4.1/PDF/
www.omg.org/spec/MOF/2.4.1/PDF/
www.omg.org/spec/OCL/2.3.1/PDF/
http://sim.sagepub.com/

Dimosthenis Anagnostopoulos is a Professor in the

Department of Informatics and Telematics at Harokopio

University of Athens. He holds a PhD and Bachelor degree

on Computer Science from Department of Informatics and

Telecommunications at University of Athens. He has pub-

lished more than 100 papers in international journals and

conferences. His research interests include discrete event

simulation, faster-than-real-time simulation, modeling and

simulation of distributed information systems. He has

actively participated in numerous projects related to simula-

tion, e-government and information systems.

Appendix. Meta-model definitions and
transformations

A. Transforming SysML to DEVS models with QVT

The transformation from SysML to DEVS models is an

important element of the proposed framework. In order to

provide an implementation perspective, the part of the

QVT transformation that identifies SysML block state tran-

sitions and creates the corresponding DEVS component

behavioural characteristics is presented in Code Listing 3.

738 Simulation: Transactions of the Society for Modeling and Simulation International 90(6)

 at Harokopio University on June 3, 2014sim.sagepub.comDownloaded from

http://sim.sagepub.com/

Kapos et al. 739

 at Harokopio University on June 3, 2014sim.sagepub.comDownloaded from

http://sim.sagepub.com/

In relational QVT, a transformation between two

domains is defined through a set of relations that map enti-

ties of one domain to entities of the other. The transforma-

tion is initiated by the application of top relations, which

usually reference other relations. The two domains

(devsSysml and devs) are declared and characterized.

devsSysml is marked as checkonly, since it is the source

domain and does not need to be updated to satisfy condi-

tions declared in the relation. On the other hand, domain

devs is characterized as enforce, as this is the target

domain that needs to be constructed according to the con-

ditions stated in the relation. The relation must be enforced

in this case. Regarding the transformation of state transi-

tions of SysML blocks’ state machine diagrams, six rela-

tions are used. Transitions2ConditionalFunctions creates

DEVS Atomic Internal Transition Function, while

StringSequence2StateVarUpdate handles the appropriate

state variable modification specification. Transitions2

ConditionalOutputFunctions defines DEVS Atomic Output

Function with the aid of StringSequence2PortOutputs.

Transitions2ConditionalTimeAdvances defines DEVS

Atomic Time Advance function for states that will be cur-

rent for finite amounts of time, while NoTransitions2

InfiniteConditionalTimeAdvances identifies states without

outgoing transitions.

Transitions2ConditionalOutputFunctions is described in

more detail in the following. Precisely, this relation identifies

DEVS Internal Transitions, their Origin states and DEVS

Outputs, and maps them to the corresponding

CONDITIONAL_OUTPUT_FUNCTION, SEND and

VALUE elements. For each domain, the elements of interest

are declared: transition with its source and effect for

devsSysml, and CONDITIONAL_OUTPUT_FUNCTION

with its STATE_CONDITION for devsXml. Variables are

used to match values between the domains, e.g. ns variable

is used to match transition.source.name with

CONDITIONAL_OUTPUT_FUNCTION.STATE_CONDITI-

ON.text. The when clause of a relation defines the precondi-

tions that must be met for this relation to be applied. The

clause may contain other relation invocations or OCL

expressions. In this example, tr (the transition) must have the

stereotype DEVS State Transition. This means that a

CONDITIONAL_OUTPUT_FUNCTION element will be

created only for each transition that is stereotyped as DEVS

State Transition. The where clause of a relation defines the

expressions (possibly with other relations) that should be

applied after this relation is applied and the domain elements

are created. The relation StringSequence2Output parses the

output command y and creates the appropriate elements

under the sc state condition element. In this case, an OCL

expression results in multiple invocations of a relation. The

first element of the string sequence b is splinted in all its sub-

strings that are delimited by the ’cmd:’ string, resulting is a

list of all commands. From those, only the ones starting with

the string ’output’ (only output commands) are selected.

Medini tool has been used for both the definition of the

DEVS meta-model and the definition and execution of the

QVT transformation from SysML models to DEVS mod-

els. In Figure 14, the Medini GUI for creating and viewing

MOF meta-models is illustrated.

Code Listing 3. DEVS conditional functions transformation with QVT.

740 Simulation: Transactions of the Society for Modeling and Simulation International 90(6)

 at Harokopio University on June 3, 2014sim.sagepub.comDownloaded from

http://sim.sagepub.com/

Figure 14. DEVS MOF meta-model definition within Medini tool in terms of MOF elements.

Kapos et al. 741

 at Harokopio University on June 3, 2014sim.sagepub.comDownloaded from

http://sim.sagepub.com/

742 Simulation: Transactions of the Society for Modeling and Simulation International 90(6)

 at Harokopio University on June 3, 2014sim.sagepub.comDownloaded from

http://sim.sagepub.com/

Figure 15 illustrates the QVT editor of the Medini tool.

As shown in the left part of the figure, DEVS_MM.ecore

is the file containing the definition of DEVS MOF meta-

model. The UML2 meta-model is integrated in the tool.

Medini allows relational QVT transformation execution

and debugging.

B. Creating XLSC executable models from DEVS
models with XSLT

In order to be able to execute DEVS models in XMI for-

mat, they should be transformed to an executable format

(XLSC documents in this case). XSLT -the de facto stan-

dard for syntactic transformations of XML documents with

different formats- was used for this purpose. In the same

context as in Appendix A, the XSLT templates transform-

ing DEVS Internal Transition, Time Advance and Output

Functions to the respective XLSC elements are listed in

Code Listing 4.

The XSLT transformation was defined using EditX tool

that provides XSLT execution capabilities and is freely

available. A screenshot of the tool is provided in

Figure 16. It depicts the simple transformation template

that matches STATE_VARIABLES elements of DEVS

models to StatePart elements of XLSC XML documents.

As shown in Figure 16, the defined xsl elements, con-

trol how the transformation is performed, while simple ele-

ments are the skeleton of the result of the transformation,

which is formed and enriched by the xsl command ele-

ments. For example, the first element (xsl:template) indi-

cates that all commands contained in it should be executed

for every STATE_VARIABLES element found in the con-

text of this template. The second element (xsl:for-each)

indicates that all the commands contained in it should be

executed for every STATE_VARIABLE element con-

tained exactly under the VARIABLES element found in

the previous line. The state element that follows will be

added to the output for each STATE_VARIABLE ele-

ment. The following xsl:attribute commands attach two

attributes (name and type) at the state element. The value

of the first one (name) will be the same as the value of the

name attribute of the source STATE_VARIABLE ele-

ment. The value of the other attribute (type) emerges by

Code Listing 4. DEVS internal, time advance, and output functions transformation with XSLT.

Kapos et al. 743

 at Harokopio University on June 3, 2014sim.sagepub.comDownloaded from

http://sim.sagepub.com/

properly transforming the value of the type attribute of the

source STATE_VARIABLE element, as indicated by the

xsl:choose and xsl:when elements. Finally, the expression

template is invoked (xsl:call-template), so as to find the

initial value of the STATE_VARIABLE element and

transform it to the appropriate state value.

Figure 15. UML2 to DEVS MOF transformation with Medini.

Figure 16. DEVS XMI to XLSC transformation with EditX.

744 Simulation: Transactions of the Society for Modeling and Simulation International 90(6)

 at Harokopio University on June 3, 2014sim.sagepub.comDownloaded from

http://sim.sagepub.com/

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (Coated FOGRA27 \050ISO 12647-2:2004\051)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize false
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness false
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Remove
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /ACaslon-Bold
 /ACaslon-BoldItalic
 /ACaslon-Italic
 /ACaslon-Ornaments
 /ACaslon-Regular
 /ACaslon-Semibold
 /ACaslon-SemiboldItalic
 /AdobeCorpID-Acrobat
 /AdobeCorpID-Adobe
 /AdobeCorpID-Bullet
 /AdobeCorpID-MinionBd
 /AdobeCorpID-MinionBdIt
 /AdobeCorpID-MinionRg
 /AdobeCorpID-MinionRgIt
 /AdobeCorpID-MinionSb
 /AdobeCorpID-MinionSbIt
 /AdobeCorpID-MyriadBd
 /AdobeCorpID-MyriadBdIt
 /AdobeCorpID-MyriadBdScn
 /AdobeCorpID-MyriadBdScnIt
 /AdobeCorpID-MyriadBl
 /AdobeCorpID-MyriadBlIt
 /AdobeCorpID-MyriadLt
 /AdobeCorpID-MyriadLtIt
 /AdobeCorpID-MyriadPkg
 /AdobeCorpID-MyriadRg
 /AdobeCorpID-MyriadRgIt
 /AdobeCorpID-MyriadRgScn
 /AdobeCorpID-MyriadRgScnIt
 /AdobeCorpID-MyriadSb
 /AdobeCorpID-MyriadSbIt
 /AdobeCorpID-MyriadSbScn
 /AdobeCorpID-MyriadSbScnIt
 /AdobeCorpID-PScript
 /AGaramond-BoldScaps
 /AGaramond-Italic
 /AGaramond-Regular
 /AGaramond-RomanScaps
 /AGaramond-Semibold
 /AGaramond-SemiboldItalic
 /AGar-Special
 /AkzidenzGroteskBE-Bold
 /AkzidenzGroteskBE-BoldEx
 /AkzidenzGroteskBE-BoldExIt
 /AkzidenzGroteskBE-BoldIt
 /AkzidenzGroteskBE-Ex
 /AkzidenzGroteskBE-It
 /AkzidenzGroteskBE-Light
 /AkzidenzGroteskBE-LightEx
 /AkzidenzGroteskBE-LightOsF
 /AkzidenzGroteskBE-Md
 /AkzidenzGroteskBE-MdEx
 /AkzidenzGroteskBE-MdIt
 /AkzidenzGroteskBE-Regular
 /AkzidenzGroteskBE-Super
 /AlbertusMT
 /AlbertusMT-Italic
 /AlbertusMT-Light
 /Aldine401BT-BoldA
 /Aldine401BT-BoldItalicA
 /Aldine401BT-ItalicA
 /Aldine401BT-RomanA
 /Aldine401BTSPL-RomanA
 /Aldine721BT-Bold
 /Aldine721BT-BoldItalic
 /Aldine721BT-Italic
 /Aldine721BT-Light
 /Aldine721BT-LightItalic
 /Aldine721BT-Roman
 /Aldus-Italic
 /Aldus-ItalicOsF
 /Aldus-Roman
 /Aldus-RomanSC
 /AlternateGothicNo2BT-Regular
 /AmazoneBT-Regular
 /AmericanTypewriter-Bold
 /AmericanTypewriter-BoldA
 /AmericanTypewriter-BoldCond
 /AmericanTypewriter-BoldCondA
 /AmericanTypewriter-Cond
 /AmericanTypewriter-CondA
 /AmericanTypewriter-Light
 /AmericanTypewriter-LightA
 /AmericanTypewriter-LightCond
 /AmericanTypewriter-LightCondA
 /AmericanTypewriter-Medium
 /AmericanTypewriter-MediumA
 /Anna
 /AntiqueOlive-Bold
 /AntiqueOlive-Compact
 /AntiqueOlive-Italic
 /AntiqueOlive-Roman
 /Arcadia
 /Arcadia-A
 /Arkona-Medium
 /Arkona-Regular
 /ArrusBT-Black
 /ArrusBT-BlackItalic
 /ArrusBT-Bold
 /ArrusBT-BoldItalic
 /ArrusBT-Italic
 /ArrusBT-Roman
 /AssemblyLightSSK
 /AuroraBT-BoldCondensed
 /AuroraBT-RomanCondensed
 /AuroraOpti-Condensed
 /AvantGarde-Book
 /AvantGarde-BookOblique
 /AvantGarde-Demi
 /AvantGarde-DemiOblique
 /Avenir-Black
 /Avenir-BlackOblique
 /Avenir-Book
 /Avenir-BookOblique
 /Avenir-Heavy
 /Avenir-HeavyOblique
 /Avenir-Light
 /Avenir-LightOblique
 /Avenir-Medium
 /Avenir-MediumOblique
 /Avenir-Oblique
 /Avenir-Roman
 /BaileySansITC-Bold
 /BaileySansITC-BoldItalic
 /BaileySansITC-Book
 /BaileySansITC-BookItalic
 /BakerSignetBT-Roman
 /BaskervilleBE-Italic
 /BaskervilleBE-Medium
 /BaskervilleBE-MediumItalic
 /BaskervilleBE-Regular
 /Baskerville-Bold
 /BaskervilleBook-Italic
 /BaskervilleBook-MedItalic
 /BaskervilleBook-Medium
 /BaskervilleBook-Regular
 /BaskervilleBT-Bold
 /BaskervilleBT-BoldItalic
 /BaskervilleBT-Italic
 /BaskervilleBT-Roman
 /BaskervilleMT
 /BaskervilleMT-Bold
 /BaskervilleMT-BoldItalic
 /BaskervilleMT-Italic
 /BaskervilleMT-SemiBold
 /BaskervilleMT-SemiBoldItalic
 /BaskervilleNo2BT-Bold
 /BaskervilleNo2BT-BoldItalic
 /BaskervilleNo2BT-Italic
 /BaskervilleNo2BT-Roman
 /Baskerville-Normal-Italic
 /BauerBodoni-Black
 /BauerBodoni-BlackCond
 /BauerBodoni-BlackItalic
 /BauerBodoni-Bold
 /BauerBodoni-BoldCond
 /BauerBodoni-BoldItalic
 /BauerBodoni-BoldItalicOsF
 /BauerBodoni-BoldOsF
 /BauerBodoni-Italic
 /BauerBodoni-ItalicOsF
 /BauerBodoni-Roman
 /BauerBodoni-RomanSC
 /Bauhaus-Bold
 /Bauhaus-Demi
 /Bauhaus-Heavy
 /BauhausITCbyBT-Bold
 /BauhausITCbyBT-Heavy
 /BauhausITCbyBT-Light
 /BauhausITCbyBT-Medium
 /Bauhaus-Light
 /Bauhaus-Medium
 /BellCentennial-Address
 /BellGothic-Black
 /BellGothic-Bold
 /Bell-GothicBoldItalicBT
 /BellGothicBT-Bold
 /BellGothicBT-Roman
 /BellGothic-Light
 /Bembo
 /Bembo-Bold
 /Bembo-BoldExpert
 /Bembo-BoldItalic
 /Bembo-BoldItalicExpert
 /Bembo-Expert
 /Bembo-ExtraBoldItalic
 /Bembo-Italic
 /Bembo-ItalicExpert
 /Bembo-Semibold
 /Bembo-SemiboldItalic
 /Benguiat-Bold
 /Benguiat-BoldItalic
 /Benguiat-Book
 /Benguiat-BookItalic
 /BenguiatGothicITCbyBT-Bold
 /BenguiatGothicITCbyBT-BoldItal
 /BenguiatGothicITCbyBT-Book
 /BenguiatGothicITCbyBT-BookItal
 /BenguiatITCbyBT-Bold
 /BenguiatITCbyBT-BoldItalic
 /BenguiatITCbyBT-Book
 /BenguiatITCbyBT-BookItalic
 /Benguiat-Medium
 /Benguiat-MediumItalic
 /Berkeley-Black
 /Berkeley-BlackItalic
 /Berkeley-Bold
 /Berkeley-BoldItalic
 /Berkeley-Book
 /Berkeley-BookItalic
 /Berkeley-Italic
 /Berkeley-Medium
 /Berling-Bold
 /Berling-BoldItalic
 /Berling-Italic
 /Berling-Roman
 /BernhardBoldCondensedBT-Regular
 /BernhardFashionBT-Regular
 /BernhardModernBT-Bold
 /BernhardModernBT-BoldItalic
 /BernhardModernBT-Italic
 /BernhardModernBT-Roman
 /BernhardTangoBT-Regular
 /BlockBE-Condensed
 /BlockBE-ExtraCn
 /BlockBE-ExtraCnIt
 /BlockBE-Heavy
 /BlockBE-Italic
 /BlockBE-Regular
 /Bodoni
 /Bodoni-Bold
 /Bodoni-BoldItalic
 /Bodoni-Italic
 /Bodoni-Poster
 /Bodoni-PosterCompressed
 /Bookman-Demi
 /Bookman-DemiItalic
 /Bookman-Light
 /Bookman-LightItalic
 /Boton-Italic
 /Boton-Medium
 /Boton-MediumItalic
 /Boton-Regular
 /Boulevard
 /BremenBT-Black
 /BremenBT-Bold
 /BroadwayBT-Regular
 /CaflischScript-Bold
 /CaflischScript-Regular
 /Caliban
 /CarminaBT-Bold
 /CarminaBT-BoldItalic
 /CarminaBT-Light
 /CarminaBT-LightItalic
 /CarminaBT-Medium
 /CarminaBT-MediumItalic
 /Carta
 /Caslon224ITCbyBT-Bold
 /Caslon224ITCbyBT-BoldItalic
 /Caslon224ITCbyBT-Book
 /Caslon224ITCbyBT-BookItalic
 /Caslon540BT-Italic
 /Caslon540BT-Roman
 /CaslonBT-Bold
 /CaslonBT-BoldItalic
 /CaslonOpenFace
 /CaslonTwoTwentyFour-Black
 /CaslonTwoTwentyFour-BlackIt
 /CaslonTwoTwentyFour-Bold
 /CaslonTwoTwentyFour-BoldIt
 /CaslonTwoTwentyFour-Book
 /CaslonTwoTwentyFour-BookIt
 /CaslonTwoTwentyFour-Medium
 /CaslonTwoTwentyFour-MediumIt
 /CastleT-Bold
 /CastleT-Book
 /Caxton-Bold
 /Caxton-BoldItalic
 /Caxton-Book
 /Caxton-BookItalic
 /CaxtonBT-Bold
 /CaxtonBT-BoldItalic
 /CaxtonBT-Book
 /CaxtonBT-BookItalic
 /Caxton-Light
 /Caxton-LightItalic
 /CelestiaAntiqua-Ornaments
 /Centennial-BlackItalicOsF
 /Centennial-BlackOsF
 /Centennial-BoldItalicOsF
 /Centennial-BoldOsF
 /Centennial-ItalicOsF
 /Centennial-LightItalicOsF
 /Centennial-LightSC
 /Centennial-RomanSC
 /Century-Bold
 /Century-BoldItalic
 /Century-Book
 /Century-BookItalic
 /CenturyExpandedBT-Bold
 /CenturyExpandedBT-BoldItalic
 /CenturyExpandedBT-Italic
 /CenturyExpandedBT-Roman
 /Century-HandtooledBold
 /Century-HandtooledBoldItalic
 /Century-Light
 /Century-LightItalic
 /CenturyOldStyle-Bold
 /CenturyOldStyle-Italic
 /CenturyOldStyle-Regular
 /CenturySchoolbookBT-Bold
 /CenturySchoolbookBT-BoldCond
 /CenturySchoolbookBT-BoldItalic
 /CenturySchoolbookBT-Italic
 /CenturySchoolbookBT-Roman
 /Century-Ultra
 /Century-UltraItalic
 /CharterBT-Black
 /CharterBT-BlackItalic
 /CharterBT-Bold
 /CharterBT-BoldItalic
 /CharterBT-Italic
 /CharterBT-Roman
 /CheltenhamBT-Bold
 /CheltenhamBT-BoldCondItalic
 /CheltenhamBT-BoldExtraCondensed
 /CheltenhamBT-BoldHeadline
 /CheltenhamBT-BoldItalic
 /CheltenhamBT-BoldItalicHeadline
 /CheltenhamBT-Italic
 /CheltenhamBT-Roman
 /Cheltenham-HandtooledBdIt
 /Cheltenham-HandtooledBold
 /CheltenhamITCbyBT-Bold
 /CheltenhamITCbyBT-BoldItalic
 /CheltenhamITCbyBT-Book
 /CheltenhamITCbyBT-BookItalic
 /Christiana-Bold
 /Christiana-BoldItalic
 /Christiana-Italic
 /Christiana-Medium
 /Christiana-MediumItalic
 /Christiana-Regular
 /Christiana-RegularExpert
 /Christiana-RegularSC
 /Clarendon
 /Clarendon-Bold
 /Clarendon-Light
 /ClassicalGaramondBT-Bold
 /ClassicalGaramondBT-BoldItalic
 /ClassicalGaramondBT-Italic
 /ClassicalGaramondBT-Roman
 /CMR10
 /CMR8
 /CMSY10
 /CMSY8
 /CMTI10
 /CommonBullets
 /ConduitITC-Bold
 /ConduitITC-BoldItalic
 /ConduitITC-Light
 /ConduitITC-LightItalic
 /ConduitITC-Medium
 /ConduitITC-MediumItalic
 /CooperBlack
 /CooperBlack-Italic
 /CooperBT-Bold
 /CooperBT-BoldItalic
 /CooperBT-Light
 /CooperBT-LightItalic
 /CopperplateGothicBT-Bold
 /CopperplateGothicBT-BoldCond
 /CopperplateGothicBT-Heavy
 /CopperplateGothicBT-Roman
 /CopperplateGothicBT-RomanCond
 /Copperplate-ThirtyThreeBC
 /Copperplate-ThirtyTwoBC
 /Coronet-Regular
 /Courier
 /Courier-Bold
 /Courier-BoldOblique
 /Courier-Oblique
 /Critter
 /CS-Special-font
 /DellaRobbiaBT-Bold
 /DellaRobbiaBT-Roman
 /Della-RobbiaItalicBT
 /Della-RobbiaSCaps
 /Del-NormalSmallCaps
 /Delphin-IA
 /Delphin-IIA
 /Delta-Bold
 /Delta-BoldItalic
 /Delta-Book
 /Delta-BookItalic
 /Delta-Light
 /Delta-LightItalic
 /Delta-Medium
 /Delta-MediumItalic
 /Delta-Outline
 /DextorD
 /DextorOutD
 /DidotLH-OrnamentsOne
 /DidotLH-OrnamentsTwo
 /DINEngschrift
 /DINEngschrift-Alternate
 /DINMittelschrift
 /DINMittelschrift-Alternate
 /DINNeuzeitGrotesk-BoldCond
 /DINNeuzeitGrotesk-Light
 /Dom-CasItalic
 /DomCasual
 /DomCasual-Bold
 /Dom-CasualBT
 /Ehrhard-Italic
 /Ehrhard-Regular
 /EhrhardSemi-Italic
 /EhrhardtMT
 /EhrhardtMT-Italic
 /EhrhardtMT-SemiBold
 /EhrhardtMT-SemiBoldItalic
 /EhrharSemi
 /ELANGO-IB-A03
 /ELANGO-IB-A75
 /ELANGO-IB-A99
 /ElectraLH-Bold
 /ElectraLH-BoldCursive
 /ElectraLH-Cursive
 /ElectraLH-Regular
 /ElGreco
 /EnglischeSchT-Bold
 /EnglischeSchT-Regu
 /ErasContour
 /ErasITCbyBT-Bold
 /ErasITCbyBT-Book
 /ErasITCbyBT-Demi
 /ErasITCbyBT-Light
 /ErasITCbyBT-Medium
 /ErasITCbyBT-Ultra
 /Euclid
 /Euclid-Bold
 /Euclid-BoldItalic
 /EuclidExtra
 /EuclidExtra-Bold
 /EuclidFraktur
 /EuclidFraktur-Bold
 /Euclid-Italic
 /EuclidMathOne
 /EuclidMathOne-Bold
 /EuclidMathTwo
 /EuclidMathTwo-Bold
 /EuclidSymbol
 /EuclidSymbol-Bold
 /EuclidSymbol-BoldItalic
 /EuclidSymbol-Italic
 /EUEX10
 /EUFB10
 /EUFB5
 /EUFB7
 /EUFM10
 /EUFM5
 /EUFM7
 /EURB10
 /EURB5
 /EURB7
 /EURM10
 /EURM5
 /EURM7
 /EuropeanPi-Four
 /EuropeanPi-One
 /EuropeanPi-Three
 /EuropeanPi-Two
 /EuroSans-Bold
 /EuroSans-BoldItalic
 /EuroSans-Italic
 /EuroSans-Regular
 /EuroSerif-Bold
 /EuroSerif-BoldItalic
 /EuroSerif-Italic
 /EuroSerif-Regular
 /Eurostile
 /Eurostile-Bold
 /Eurostile-BoldCondensed
 /Eurostile-BoldExtendedTwo
 /Eurostile-BoldOblique
 /Eurostile-Condensed
 /Eurostile-Demi
 /Eurostile-DemiOblique
 /Eurostile-ExtendedTwo
 /EurostileLTStd-Demi
 /EurostileLTStd-DemiOblique
 /Eurostile-Oblique
 /EUSB10
 /EUSB5
 /EUSB7
 /EUSM10
 /EUSM5
 /EUSM7
 /ExPonto-Regular
 /FairfieldLH-Bold
 /FairfieldLH-BoldItalic
 /FairfieldLH-BoldSC
 /FairfieldLH-CaptionBold
 /FairfieldLH-CaptionHeavy
 /FairfieldLH-CaptionLight
 /FairfieldLH-CaptionMedium
 /FairfieldLH-Heavy
 /FairfieldLH-HeavyItalic
 /FairfieldLH-HeavySC
 /FairfieldLH-Light
 /FairfieldLH-LightItalic
 /FairfieldLH-LightSC
 /FairfieldLH-Medium
 /FairfieldLH-MediumItalic
 /FairfieldLH-MediumSC
 /FairfieldLH-SwBoldItalicOsF
 /FairfieldLH-SwHeavyItalicOsF
 /FairfieldLH-SwLightItalicOsF
 /FairfieldLH-SwMediumItalicOsF
 /Fences
 /Fenice-Bold
 /Fenice-BoldOblique
 /FeniceITCbyBT-Bold
 /FeniceITCbyBT-BoldItalic
 /FeniceITCbyBT-Regular
 /FeniceITCbyBT-RegularItalic
 /Fenice-Light
 /Fenice-LightOblique
 /Fenice-Regular
 /Fenice-RegularOblique
 /Fenice-Ultra
 /Fenice-UltraOblique
 /FlashD-Ligh
 /Flood
 /Folio-Bold
 /Folio-BoldCondensed
 /Folio-ExtraBold
 /Folio-Light
 /Folio-Medium
 /FontanaNDAaOsF
 /FontanaNDAaOsF-Italic
 /FontanaNDCcOsF-Semibold
 /FontanaNDCcOsF-SemiboldIta
 /FontanaNDEeOsF
 /FontanaNDEeOsF-Bold
 /FontanaNDEeOsF-BoldItalic
 /FontanaNDEeOsF-Light
 /FontanaNDEeOsF-Semibold
 /FormalScript421BT-Regular
 /Formata-Bold
 /Formata-MediumCondensed
 /ForteMT
 /FournierMT-Ornaments
 /FrakturBT-Regular
 /FrankfurterHigD
 /FranklinGothic-Book
 /FranklinGothic-BookItal
 /FranklinGothic-BookOblique
 /FranklinGothic-Condensed
 /FranklinGothic-Demi
 /FranklinGothic-DemiItal
 /FranklinGothic-DemiOblique
 /FranklinGothic-Heavy
 /FranklinGothic-HeavyItal
 /FranklinGothic-HeavyOblique
 /FranklinGothicITCbyBT-BookItal
 /FranklinGothicITCbyBT-Demi
 /FranklinGothicITCbyBT-DemiItal
 /FranklinGothicITCbyBT-Heavy
 /FranklinGothicITCbyBT-HeavyItal
 /FranklinGothic-Medium
 /FranklinGothic-MediumItal
 /FranklinGothic-Roman
 /Freeform721BT-Bold
 /Freeform721BT-BoldItalic
 /Freeform721BT-Italic
 /Freeform721BT-Roman
 /FreestyleScrD
 /Freestylescript
 /FreestyleScript
 /FrizQuadrataITCbyBT-Bold
 /FrizQuadrataITCbyBT-Roman
 /Frutiger-Black
 /Frutiger-BlackCn
 /Frutiger-BlackItalic
 /Frutiger-Bold
 /Frutiger-BoldCn
 /Frutiger-BoldItalic
 /Frutiger-Cn
 /Frutiger-ExtraBlackCn
 /Frutiger-Italic
 /Frutiger-Light
 /Frutiger-LightCn
 /Frutiger-LightItalic
 /Frutiger-Roman
 /Frutiger-UltraBlack
 /Futura
 /FuturaBlackBT-Regular
 /Futura-Bold
 /Futura-BoldOblique
 /Futura-Book
 /Futura-BookOblique
 /FuturaBT-Bold
 /FuturaBT-BoldCondensed
 /FuturaBT-BoldCondensedItalic
 /FuturaBT-BoldItalic
 /FuturaBT-Book
 /FuturaBT-BookItalic
 /FuturaBT-ExtraBlack
 /FuturaBT-ExtraBlackCondensed
 /FuturaBT-ExtraBlackCondItalic
 /FuturaBT-ExtraBlackItalic
 /FuturaBT-Heavy
 /FuturaBT-HeavyItalic
 /FuturaBT-Light
 /FuturaBT-LightCondensed
 /FuturaBT-LightItalic
 /FuturaBT-Medium
 /FuturaBT-MediumCondensed
 /FuturaBT-MediumItalic
 /Futura-CondensedLight
 /Futura-CondensedLightOblique
 /Futura-ExtraBold
 /Futura-ExtraBoldOblique
 /Futura-Heavy
 /Futura-HeavyOblique
 /Futura-Light
 /Futura-LightOblique
 /Futura-Oblique
 /Futura-Thin
 /Galliard-Black
 /Galliard-BlackItalic
 /Galliard-Bold
 /Galliard-BoldItalic
 /Galliard-Italic
 /GalliardITCbyBT-Bold
 /GalliardITCbyBT-BoldItalic
 /GalliardITCbyBT-Italic
 /GalliardITCbyBT-Roman
 /Galliard-Roman
 /Galliard-Ultra
 /Galliard-UltraItalic
 /Garamond-Antiqua
 /GaramondBE-Bold
 /GaramondBE-BoldExpert
 /GaramondBE-BoldOsF
 /GaramondBE-CnExpert
 /GaramondBE-Condensed
 /GaramondBE-CondensedSC
 /GaramondBE-Italic
 /GaramondBE-ItalicExpert
 /GaramondBE-ItalicOsF
 /GaramondBE-Medium
 /GaramondBE-MediumCn
 /GaramondBE-MediumCnExpert
 /GaramondBE-MediumCnOsF
 /GaramondBE-MediumExpert
 /GaramondBE-MediumItalic
 /GaramondBE-MediumItalicExpert
 /GaramondBE-MediumItalicOsF
 /GaramondBE-MediumSC
 /GaramondBE-Regular
 /GaramondBE-RegularExpert
 /GaramondBE-RegularSC
 /GaramondBE-SwashItalic
 /Garamond-Bold
 /Garamond-BoldCondensed
 /Garamond-BoldCondensedItalic
 /Garamond-BoldItalic
 /Garamond-Book
 /Garamond-BookCondensed
 /Garamond-BookCondensedItalic
 /Garamond-BookItalic
 /Garamond-Halbfett
 /Garamond-HandtooledBold
 /Garamond-HandtooledBoldItalic
 /GaramondITCbyBT-Bold
 /GaramondITCbyBT-BoldCondensed
 /GaramondITCbyBT-BoldCondItalic
 /GaramondITCbyBT-BoldItalic
 /GaramondITCbyBT-BoldNarrow
 /GaramondITCbyBT-BoldNarrowItal
 /GaramondITCbyBT-Book
 /GaramondITCbyBT-BookCondensed
 /GaramondITCbyBT-BookCondItalic
 /GaramondITCbyBT-BookItalic
 /GaramondITCbyBT-BookNarrow
 /GaramondITCbyBT-BookNarrowItal
 /GaramondITCbyBT-Light
 /GaramondITCbyBT-LightCondensed
 /GaramondITCbyBT-LightCondItalic
 /GaramondITCbyBT-LightItalic
 /GaramondITCbyBT-LightNarrow
 /GaramondITCbyBT-LightNarrowItal
 /GaramondITCbyBT-Ultra
 /GaramondITCbyBT-UltraCondensed
 /GaramondITCbyBT-UltraCondItalic
 /GaramondITCbyBT-UltraItalic
 /Garamond-Kursiv
 /Garamond-KursivHalbfett
 /Garamond-Light
 /Garamond-LightCondensed
 /Garamond-LightCondensedItalic
 /Garamond-LightItalic
 /GaramondNo4CyrTCY-Ligh
 /GaramondNo4CyrTCY-LighItal
 /GaramondThree
 /GaramondThree-Bold
 /GaramondThree-BoldItalic
 /GaramondThree-BoldItalicOsF
 /GaramondThree-BoldSC
 /GaramondThree-Italic
 /GaramondThree-ItalicOsF
 /GaramondThree-SC
 /GaramondThreeSMSIISpl-Italic
 /GaramondThreeSMSitalicSpl-Italic
 /GaramondThreeSMSspl
 /GaramondThreespl
 /GaramondThreeSpl-Bold
 /GaramondThreeSpl-Italic
 /Garamond-Ultra
 /Garamond-UltraCondensed
 /Garamond-UltraCondensedItalic
 /Garamond-UltraItalic
 /GarthGraphic
 /GarthGraphic-Black
 /GarthGraphic-Bold
 /GarthGraphic-BoldCondensed
 /GarthGraphic-BoldItalic
 /GarthGraphic-Condensed
 /GarthGraphic-ExtraBold
 /GarthGraphic-Italic
 /Geometric231BT-HeavyC
 /GeometricSlab712BT-BoldA
 /GeometricSlab712BT-ExtraBoldA
 /GeometricSlab712BT-LightA
 /GeometricSlab712BT-LightItalicA
 /GeometricSlab712BT-MediumA
 /GeometricSlab712BT-MediumItalA
 /Giddyup
 /Giddyup-Thangs
 /GillSans
 /GillSans-Bold
 /GillSans-BoldCondensed
 /GillSans-BoldExtraCondensed
 /GillSans-BoldItalic
 /GillSans-Condensed
 /GillSans-ExtraBold
 /GillSans-ExtraBoldDisplay
 /GillSans-Italic
 /GillSans-Light
 /GillSans-LightItalic
 /GillSans-LightShadowed
 /GillSans-Shadowed
 /GillSans-UltraBold
 /GillSans-UltraBoldCondensed
 /Gill-Special
 /Giovanni-Bold
 /Giovanni-BoldItalic
 /Giovanni-Book
 /Giovanni-BookItalic
 /Glypha
 /Glypha-Bold
 /Glypha-BoldOblique
 /Glypha-Oblique
 /Gothic-Thirteen
 /Goudy
 /Goudy-Bold
 /Goudy-BoldItalic
 /GoudyCatalogueBT-Regular
 /Goudy-ExtraBold
 /GoudyHandtooledBT-Regular
 /GoudyHeavyfaceBT-Regular
 /GoudyHeavyfaceBT-RegularCond
 /Goudy-Italic
 /GoudyOldStyleBT-Bold
 /GoudyOldStyleBT-BoldItalic
 /GoudyOldStyleBT-ExtraBold
 /GoudyOldStyleBT-Italic
 /GoudyOldStyleBT-Roman
 /GoudySans-Black
 /GoudySans-BlackItalic
 /GoudySans-Bold
 /GoudySans-BoldItalic
 /GoudySans-Book
 /GoudySans-BookItalic
 /GoudySansITCbyBT-Black
 /GoudySansITCbyBT-BlackItalic
 /GoudySansITCbyBT-Bold
 /GoudySansITCbyBT-BoldItalic
 /GoudySansITCbyBT-Light
 /GoudySansITCbyBT-LightItalic
 /GoudySansITCbyBT-Medium
 /GoudySansITCbyBT-MediumItalic
 /GoudySans-Medium
 /GoudySans-MediumItalic
 /Granjon
 /Granjon-Bold
 /Granjon-BoldOsF
 /Granjon-Italic
 /Granjon-ItalicOsF
 /Granjon-SC
 /GreymantleMVB-Ornaments
 /Helvetica
 /Helvetica-Black
 /Helvetica-BlackOblique
 /Helvetica-Black-SemiBold
 /Helvetica-Bold
 /Helvetica-BoldOblique
 /Helvetica-Compressed
 /Helvetica-Condensed
 /Helvetica-Condensed-Black
 /Helvetica-Condensed-BlackObl
 /Helvetica-Condensed-Bold
 /Helvetica-Condensed-BoldObl
 /Helvetica-Condensed-Light
 /Helvetica-Condensed-Light-Light
 /Helvetica-Condensed-LightObl
 /Helvetica-Condensed-Oblique
 /Helvetica-Condensed-Thin
 /Helvetica-ExtraCompressed
 /Helvetica-Fraction
 /Helvetica-FractionBold
 /HelveticaInserat-Roman
 /HelveticaInserat-Roman-SemiBold
 /Helvetica-Light
 /Helvetica-LightOblique
 /Helvetica-Narrow
 /Helvetica-Narrow-Bold
 /Helvetica-Narrow-BoldOblique
 /Helvetica-Narrow-Oblique
 /HelveticaNeue-Black
 /HelveticaNeue-BlackCond
 /HelveticaNeue-BlackCondObl
 /HelveticaNeue-BlackExt
 /HelveticaNeue-BlackExtObl
 /HelveticaNeue-BlackItalic
 /HelveticaNeue-Bold
 /HelveticaNeue-BoldCond
 /HelveticaNeue-BoldCondObl
 /HelveticaNeue-BoldExt
 /HelveticaNeue-BoldExtObl
 /HelveticaNeue-BoldItalic
 /HelveticaNeue-Condensed
 /HelveticaNeue-CondensedObl
 /HelveticaNeue-ExtBlackCond
 /HelveticaNeue-ExtBlackCondObl
 /HelveticaNeue-Extended
 /HelveticaNeue-ExtendedObl
 /HelveticaNeue-Heavy
 /HelveticaNeue-HeavyCond
 /HelveticaNeue-HeavyCondObl
 /HelveticaNeue-HeavyExt
 /HelveticaNeue-HeavyExtObl
 /HelveticaNeue-HeavyItalic
 /HelveticaNeue-Italic
 /HelveticaNeue-Light
 /HelveticaNeue-LightCond
 /HelveticaNeue-LightCondObl
 /HelveticaNeue-LightExt
 /HelveticaNeue-LightExtObl
 /HelveticaNeue-LightItalic
 /HelveticaNeueLTStd-Md
 /HelveticaNeueLTStd-MdIt
 /HelveticaNeue-Medium
 /HelveticaNeue-MediumCond
 /HelveticaNeue-MediumCondObl
 /HelveticaNeue-MediumExt
 /HelveticaNeue-MediumExtObl
 /HelveticaNeue-MediumItalic
 /HelveticaNeue-Roman
 /HelveticaNeue-Thin
 /HelveticaNeue-ThinCond
 /HelveticaNeue-ThinCondObl
 /HelveticaNeue-ThinItalic
 /HelveticaNeue-UltraLigCond
 /HelveticaNeue-UltraLigCondObl
 /HelveticaNeue-UltraLigExt
 /HelveticaNeue-UltraLigExtObl
 /HelveticaNeue-UltraLight
 /HelveticaNeue-UltraLightItal
 /Helvetica-Oblique
 /Helvetica-UltraCompressed
 /HelvExtCompressed
 /HelvLight
 /HelvUltCompressed
 /Humanist521BT-Bold
 /Humanist521BT-BoldCondensed
 /Humanist521BT-BoldItalic
 /Humanist521BT-ExtraBold
 /Humanist521BT-Italic
 /Humanist521BT-Light
 /Humanist521BT-LightItalic
 /Humanist521BT-Roman
 /Humanist521BT-RomanCondensed
 /Humanist521BT-UltraBold
 /Humanist521BT-XtraBoldCondensed
 /Humanist531BT-BlackA
 /Humanist531BT-BoldA
 /Humanist531BT-RomanA
 /Humanist531BT-UltraBlackA
 /Humanist777BT-BlackB
 /Humanist777BT-BlackCondensedB
 /Humanist777BT-BlackItalicB
 /Humanist777BT-BoldB
 /Humanist777BT-BoldCondensedB
 /Humanist777BT-BoldItalicB
 /Humanist777BT-ExtraBlackB
 /Humanist777BT-ExtraBlackCondB
 /Humanist777BT-ItalicB
 /Humanist777BT-LightB
 /Humanist777BT-LightCondensedB
 /Humanist777BT-LightItalicB
 /Humanist777BT-RomanB
 /Humanist777BT-RomanCondensedB
 /Humanist970BT-BoldC
 /Humanist970BT-RomanC
 /HumanistSlabserif712BT-Black
 /HumanistSlabserif712BT-Bold
 /HumanistSlabserif712BT-Italic
 /HumanistSlabserif712BT-Roman
 /ICMEX10
 /ICMMI8
 /ICMSY8
 /ICMTT8
 /Iglesia-Light
 /ILASY8
 /ILCMSS8
 /ILCMSSB8
 /ILCMSSI8
 /Imago-Book
 /Imago-BookItalic
 /Imago-ExtraBold
 /Imago-ExtraBoldItalic
 /Imago-Light
 /Imago-LightItalic
 /Imago-Medium
 /Imago-MediumItalic
 /Industria-Inline
 /Industria-InlineA
 /Industria-Solid
 /Industria-SolidA
 /Insignia
 /Insignia-A
 /IPAExtras
 /IPAHighLow
 /IPAKiel
 /IPAKielSeven
 /IPAsans
 /ITCGaramondMM
 /ITCGaramondMM-It
 /JAKEOpti-Regular
 /JansonText-Bold
 /JansonText-BoldItalic
 /JansonText-Italic
 /JansonText-Roman
 /JansonText-RomanSC
 /JoannaMT
 /JoannaMT-Bold
 /JoannaMT-BoldItalic
 /JoannaMT-Italic
 /Juniper
 /KabelITCbyBT-Book
 /KabelITCbyBT-Demi
 /KabelITCbyBT-Medium
 /KabelITCbyBT-Ultra
 /Kaufmann
 /Kaufmann-Bold
 /KeplMM-Or2
 /KisBT-Italic
 /KisBT-Roman
 /KlangMT
 /Kuenstler480BT-Black
 /Kuenstler480BT-Bold
 /Kuenstler480BT-BoldItalic
 /Kuenstler480BT-Italic
 /Kuenstler480BT-Roman
 /KunstlerschreibschD-Bold
 /KunstlerschreibschD-Medi
 /Lapidary333BT-Black
 /Lapidary333BT-Bold
 /Lapidary333BT-BoldItalic
 /Lapidary333BT-Italic
 /Lapidary333BT-Roman
 /LASY10
 /LASY5
 /LASY6
 /LASY7
 /LASY8
 /LASY9
 /LASYB10
 /LatinMT-Condensed
 /LCIRCLE10
 /LCIRCLEW10
 /LCMSS8
 /LCMSSB8
 /LCMSSI8
 /LDecorationPi-One
 /LDecorationPi-Two
 /Leawood-Black
 /Leawood-BlackItalic
 /Leawood-Bold
 /Leawood-BoldItalic
 /Leawood-Book
 /Leawood-BookItalic
 /Leawood-Medium
 /Leawood-MediumItalic
 /LegacySans-Bold
 /LegacySans-BoldItalic
 /LegacySans-Book
 /LegacySans-BookItalic
 /LegacySans-Medium
 /LegacySans-MediumItalic
 /LegacySans-Ultra
 /LegacySerif-Bold
 /LegacySerif-BoldItalic
 /LegacySerif-Book
 /LegacySerif-BookItalic
 /LegacySerif-Medium
 /LegacySerif-MediumItalic
 /LegacySerif-Ultra
 /LetterGothic
 /LetterGothic-Bold
 /LetterGothic-BoldSlanted
 /LetterGothic-Slanted
 /Life-Bold
 /Life-Italic
 /Life-Roman
 /LINE10
 /LINEW10
 /Linotext
 /Lithos-Black
 /LithosBold
 /Lithos-Bold
 /Lithos-Regular
 /LOGO10
 /LOGO8
 /LOGO9
 /LOGOBF10
 /LOGOSL10
 /LOMD-Normal
 /LubalinGraph-Book
 /LubalinGraph-BookOblique
 /LubalinGraph-Demi
 /LubalinGraph-DemiOblique
 /LucidaHandwritingItalic
 /LucidaMath-Symbol
 /LucidaSansTypewriter
 /LucidaSansTypewriter-Bd
 /LucidaSansTypewriter-BdObl
 /LucidaSansTypewriter-Obl
 /LucidaTypewriter
 /LucidaTypewriter-Bold
 /LucidaTypewriter-BoldObl
 /LucidaTypewriter-Obl
 /LydianBT-Bold
 /LydianBT-BoldItalic
 /LydianBT-Italic
 /LydianBT-Roman
 /LydianCursiveBT-Regular
 /Machine
 /Machine-Bold
 /Marigold
 /MathematicalPi-Five
 /MathematicalPi-Four
 /MathematicalPi-One
 /MathematicalPi-Six
 /MathematicalPi-Three
 /MathematicalPi-Two
 /MatrixScriptBold
 /MatrixScriptBoldLin
 /MatrixScriptBook
 /MatrixScriptBookLin
 /MatrixScriptRegular
 /MatrixScriptRegularLin
 /Melior
 /Melior-Bold
 /Melior-BoldItalic
 /Melior-Italic
 /MercuriusCT-Black
 /MercuriusCT-BlackItalic
 /MercuriusCT-Light
 /MercuriusCT-LightItalic
 /MercuriusCT-Medium
 /MercuriusCT-MediumItalic
 /MercuriusMT-BoldScript
 /Meridien-Bold
 /Meridien-BoldItalic
 /Meridien-Italic
 /Meridien-Medium
 /Meridien-MediumItalic
 /Meridien-Roman
 /Minion-Black
 /Minion-Bold
 /Minion-BoldCondensed
 /Minion-BoldCondensedItalic
 /Minion-BoldItalic
 /Minion-Condensed
 /Minion-CondensedItalic
 /Minion-DisplayItalic
 /Minion-DisplayRegular
 /MinionExp-Italic
 /MinionExp-Semibold
 /MinionExp-SemiboldItalic
 /Minion-Italic
 /Minion-Ornaments
 /Minion-Regular
 /Minion-Semibold
 /Minion-SemiboldItalic
 /MonaLisa-Recut
 /MrsEavesAllPetiteCaps
 /MrsEavesAllSmallCaps
 /MrsEavesBold
 /MrsEavesFractions
 /MrsEavesItalic
 /MrsEavesPetiteCaps
 /MrsEavesRoman
 /MrsEavesRomanLining
 /MrsEavesSmallCaps
 /MSAM10
 /MSAM10A
 /MSAM5
 /MSAM6
 /MSAM7
 /MSAM8
 /MSAM9
 /MSBM10
 /MSBM10A
 /MSBM5
 /MSBM6
 /MSBM7
 /MSBM8
 /MSBM9
 /MTEX
 /MTEXB
 /MTEXH
 /MTGU
 /MTGUB
 /MTMI
 /MTMIB
 /MTMIH
 /MTMS
 /MTMSB
 /MTMUB
 /MTMUH
 /MTSY
 /MTSYB
 /MTSYH
 /MTSYN
 /MusicalSymbols-Normal
 /Myriad-Bold
 /Myriad-BoldItalic
 /Myriad-CnBold
 /Myriad-CnBoldItalic
 /Myriad-CnItalic
 /Myriad-CnSemibold
 /Myriad-CnSemiboldItalic
 /Myriad-Condensed
 /Myriad-Italic
 /MyriadMM
 /MyriadMM-It
 /Myriad-Roman
 /Myriad-Sketch
 /Myriad-Tilt
 /NeuzeitS-Book
 /NeuzeitS-BookHeavy
 /NewBaskerville-Bold
 /NewBaskerville-BoldItalic
 /NewBaskerville-Italic
 /NewBaskervilleITCbyBT-Bold
 /NewBaskervilleITCbyBT-BoldItal
 /NewBaskervilleITCbyBT-Italic
 /NewBaskervilleITCbyBT-Roman
 /NewBaskerville-Roman
 /NewCaledonia
 /NewCaledonia-Black
 /NewCaledonia-BlackItalic
 /NewCaledonia-Bold
 /NewCaledonia-BoldItalic
 /NewCaledonia-BoldItalicOsF
 /NewCaledonia-BoldSC
 /NewCaledonia-Italic
 /NewCaledonia-ItalicOsF
 /NewCaledonia-SC
 /NewCaledonia-SemiBold
 /NewCaledonia-SemiBoldItalic
 /NewCenturySchlbk-Bold
 /NewCenturySchlbk-BoldItalic
 /NewCenturySchlbk-Italic
 /NewCenturySchlbk-Roman
 /NewsGothic
 /NewsGothic-Bold
 /NewsGothic-BoldOblique
 /NewsGothicBT-Bold
 /NewsGothicBT-BoldCondensed
 /NewsGothicBT-BoldCondItalic
 /NewsGothicBT-BoldExtraCondensed
 /NewsGothicBT-BoldItalic
 /NewsGothicBT-Demi
 /NewsGothicBT-DemiItalic
 /NewsGothicBT-ExtraCondensed
 /NewsGothicBT-Italic
 /NewsGothicBT-ItalicCondensed
 /NewsGothicBT-Light
 /NewsGothicBT-LightItalic
 /NewsGothicBT-Roman
 /NewsGothicBT-RomanCondensed
 /NewsGothic-Oblique
 /New-Symbol
 /NovareseITCbyBT-Bold
 /NovareseITCbyBT-BoldItalic
 /NovareseITCbyBT-Book
 /NovareseITCbyBT-BookItalic
 /Nueva-BoldExtended
 /Nueva-Roman
 /NuptialScript
 /OceanSansMM
 /OceanSansMM-It
 /OfficinaSans-Bold
 /OfficinaSans-BoldItalic
 /OfficinaSans-Book
 /OfficinaSans-BookItalic
 /OfficinaSerif-Bold
 /OfficinaSerif-BoldItalic
 /OfficinaSerif-Book
 /OfficinaSerif-BookItalic
 /OnyxMT
 /Optima
 /Optima-Bold
 /Optima-BoldItalic
 /Optima-BoldOblique
 /Optima-ExtraBlack
 /Optima-ExtraBlackItalic
 /Optima-Italic
 /Optima-Oblique
 /OSPIRE-Plain
 /OttaIA
 /Otta-wa
 /Ottawa-BoldA
 /OttawaPSMT
 /Oxford
 /Palatino-Bold
 /Palatino-BoldItalic
 /Palatino-Italic
 /Palatino-Roman
 /Parisian
 /Perpetua
 /Perpetua-Bold
 /Perpetua-BoldItalic
 /Perpetua-Italic
 /PhotinaMT
 /PhotinaMT-Bold
 /PhotinaMT-BoldItalic
 /PhotinaMT-Italic
 /PhotinaMT-SemiBold
 /PhotinaMT-SemiBoldItalic
 /PhotinaMT-UltraBold
 /PhotinaMT-UltraBoldItalic
 /Plantin
 /Plantin-Bold
 /Plantin-BoldItalic
 /Plantin-Italic
 /Plantin-Light
 /Plantin-LightItalic
 /Plantin-Semibold
 /Plantin-SemiboldItalic
 /Poetica-ChanceryI
 /Poetica-SuppLowercaseEndI
 /PopplLaudatio-Italic
 /PopplLaudatio-Medium
 /PopplLaudatio-MediumItalic
 /PopplLaudatio-Regular
 /ProseAntique-Bold
 /ProseAntique-Normal
 /QuaySansEF-Black
 /QuaySansEF-BlackItalic
 /QuaySansEF-Book
 /QuaySansEF-BookItalic
 /QuaySansEF-Medium
 /QuaySansEF-MediumItalic
 /Quorum-Black
 /Quorum-Bold
 /Quorum-Book
 /Quorum-Light
 /Quorum-Medium
 /Raleigh
 /Raleigh-Bold
 /Raleigh-DemiBold
 /Raleigh-Medium
 /Revival565BT-Bold
 /Revival565BT-BoldItalic
 /Revival565BT-Italic
 /Revival565BT-Roman
 /Ribbon131BT-Bold
 /Ribbon131BT-Regular
 /RMTMI
 /Rockwell
 /Rockwell-Bold
 /Rockwell-BoldItalic
 /Rockwell-Italic
 /Rockwell-Light
 /Rockwell-LightItalic
 /RotisSansSerif
 /RotisSansSerif-Bold
 /RotisSansSerif-ExtraBold
 /RotisSansSerif-Italic
 /RotisSansSerif-Light
 /RotisSansSerif-LightItalic
 /RotisSemiSans
 /RotisSemiSans-Bold
 /RotisSemiSans-ExtraBold
 /RotisSemiSans-Italic
 /RotisSemiSans-Light
 /RotisSemiSans-LightItalic
 /RotisSemiSerif
 /RotisSemiSerif-Bold
 /RotisSerif
 /RotisSerif-Bold
 /RotisSerif-Italic
 /RunicMT-Condensed
 /Sabon-Bold
 /Sabon-BoldItalic
 /Sabon-Italic
 /Sabon-Roman
 /SackersGothicLight
 /SackersGothicLightAlt
 /SackersItalianScript
 /SackersItalianScriptAlt
 /Sam
 /Sanvito-Light
 /SanvitoMM
 /Sanvito-Roman
 /Semitica
 /Semitica-Italic
 /SIVAMATH
 /Siva-Special
 /SMS-SPELA
 /Souvenir-Demi
 /Souvenir-DemiItalic
 /SouvenirITCbyBT-Demi
 /SouvenirITCbyBT-DemiItalic
 /SouvenirITCbyBT-Light
 /SouvenirITCbyBT-LightItalic
 /Souvenir-Light
 /Souvenir-LightItalic
 /SpecialAA
 /Special-Gali
 /Sp-Sym
 /StempelGaramond-Bold
 /StempelGaramond-BoldItalic
 /StempelGaramond-Italic
 /StempelGaramond-Roman
 /StoneSans
 /StoneSans-Bold
 /StoneSans-BoldItalic
 /StoneSans-Italic
 /StoneSans-PhoneticAlternate
 /StoneSans-PhoneticIPA
 /StoneSans-Semibold
 /StoneSans-SemiboldItalic
 /StoneSerif
 /StoneSerif-Italic
 /StoneSerif-PhoneticAlternate
 /StoneSerif-PhoneticIPA
 /StoneSerif-Semibold
 /StoneSerif-SemiboldItalic
 /Swiss721BT-Black
 /Swiss721BT-BlackCondensed
 /Swiss721BT-BlackCondensedItalic
 /Swiss721BT-BlackExtended
 /Swiss721BT-BlackItalic
 /Swiss721BT-BlackOutline
 /Swiss721BT-BlackRounded
 /Swiss721BT-Bold
 /Swiss721BT-BoldCondensed
 /Swiss721BT-BoldCondensedItalic
 /Swiss721BT-BoldCondensedOutline
 /Swiss721BT-BoldExtended
 /Swiss721BT-BoldItalic
 /Swiss721BT-BoldOutline
 /Swiss721BT-BoldRounded
 /Swiss721BT-Heavy
 /Swiss721BT-HeavyItalic
 /Swiss721BT-Italic
 /Swiss721BT-ItalicCondensed
 /Swiss721BT-Light
 /Swiss721BT-LightCondensed
 /Swiss721BT-LightCondensedItalic
 /Swiss721BT-LightExtended
 /Swiss721BT-LightItalic
 /Swiss721BT-Medium
 /Swiss721BT-MediumItalic
 /Swiss721BT-Roman
 /Swiss721BT-RomanCondensed
 /Swiss721BT-RomanExtended
 /Swiss721BT-Thin
 /Swiss721BT-ThinItalic
 /Swiss921BT-RegularA
 /Symbol
 /Syntax-Black
 /Syntax-Bold
 /Syntax-Italic
 /Syntax-Roman
 /Syntax-UltraBlack
 /Tekton
 /Times-Bold
 /Times-BoldA
 /Times-BoldItalic
 /Times-BoldOblique
 /Times-Italic
 /Times-NewRoman
 /Times-NewRomanBold
 /Times-Oblique
 /Times-PhoneticAlternate
 /Times-PhoneticIPA
 /Times-Roman
 /Times-RomanSmallCaps
 /Times-Sc
 /Times-SCB
 /Times-special
 /TimesTenGreekP-Upright
 /TradeGothic
 /TradeGothic-Bold
 /TradeGothic-BoldCondTwenty
 /TradeGothic-BoldCondTwentyObl
 /TradeGothic-BoldOblique
 /TradeGothic-BoldTwo
 /TradeGothic-BoldTwoOblique
 /TradeGothic-CondEighteen
 /TradeGothic-CondEighteenObl
 /TradeGothicLH-BoldExtended
 /TradeGothicLH-Extended
 /TradeGothic-Light
 /TradeGothic-LightOblique
 /TradeGothic-Oblique
 /Trajan-Bold
 /TrajanPro-Bold
 /TrajanPro-Regular
 /Trajan-Regular
 /Transitional521BT-BoldA
 /Transitional521BT-CursiveA
 /Transitional521BT-RomanA
 /Transitional551BT-MediumB
 /Transitional551BT-MediumItalicB
 /Univers
 /Universal-GreekwithMathPi
 /Universal-NewswithCommPi
 /Univers-BlackExt
 /Univers-BlackExtObl
 /Univers-Bold
 /Univers-BoldExt
 /Univers-BoldExtObl
 /Univers-BoldOblique
 /Univers-Condensed
 /Univers-CondensedBold
 /Univers-CondensedBoldOblique
 /Univers-CondensedOblique
 /Univers-Extended
 /Univers-ExtendedObl
 /Univers-ExtraBlackExt
 /Univers-ExtraBlackExtObl
 /Univers-Light
 /Univers-LightOblique
 /UniversLTStd-Black
 /UniversLTStd-BlackObl
 /Univers-Oblique
 /Utopia-Black
 /Utopia-BlackOsF
 /Utopia-Bold
 /Utopia-BoldItalic
 /Utopia-Italic
 /Utopia-Ornaments
 /Utopia-Regular
 /Utopia-Semibold
 /Utopia-SemiboldItalic
 /VAGRounded-Black
 /VAGRounded-Bold
 /VAGRounded-Light
 /VAGRounded-Thin
 /Viva-BoldExtraExtended
 /Viva-Regular
 /Weidemann-Black
 /Weidemann-BlackItalic
 /Weidemann-Bold
 /Weidemann-BoldItalic
 /Weidemann-Book
 /Weidemann-BookItalic
 /Weidemann-Medium
 /Weidemann-MediumItalic
 /WindsorBT-Elongated
 /WindsorBT-Light
 /WindsorBT-LightCondensed
 /WindsorBT-Roman
 /Wingdings-Regular
 /WNCYB10
 /WNCYI10
 /WNCYR10
 /WNCYSC10
 /WNCYSS10
 /WoodtypeOrnaments-One
 /WoodtypeOrnaments-Two
 /ZapfCalligraphic801BT-Bold
 /ZapfCalligraphic801BT-BoldItal
 /ZapfCalligraphic801BT-Italic
 /ZapfCalligraphic801BT-Roman
 /ZapfChanceryITCbyBT-Bold
 /ZapfChanceryITCbyBT-Demi
 /ZapfChanceryITCbyBT-Medium
 /ZapfChanceryITCbyBT-MediumItal
 /ZapfChancery-MediumItalic
 /ZapfDingbats
 /ZapfDingbatsITCbyBT-Regular
 /ZapfElliptical711BT-Bold
 /ZapfElliptical711BT-BoldItalic
 /ZapfElliptical711BT-Italic
 /ZapfElliptical711BT-Roman
 /ZapfHumanist601BT-Bold
 /ZapfHumanist601BT-BoldItalic
 /ZapfHumanist601BT-Demi
 /ZapfHumanist601BT-DemiItalic
 /ZapfHumanist601BT-Italic
 /ZapfHumanist601BT-Roman
 /ZapfHumanist601BT-Ultra
 /ZapfHumanist601BT-UltraItalic
 /ZurichBT-Black
 /ZurichBT-BlackExtended
 /ZurichBT-BlackItalic
 /ZurichBT-Bold
 /ZurichBT-BoldCondensed
 /ZurichBT-BoldCondensedItalic
 /ZurichBT-BoldExtended
 /ZurichBT-BoldExtraCondensed
 /ZurichBT-BoldItalic
 /ZurichBT-ExtraBlack
 /ZurichBT-ExtraCondensed
 /ZurichBT-Italic
 /ZurichBT-ItalicCondensed
 /ZurichBT-Light
 /ZurichBT-LightCondensed
 /ZurichBT-LightCondensedItalic
 /ZurichBT-LightExtraCondensed
 /ZurichBT-LightItalic
 /ZurichBT-Roman
 /ZurichBT-RomanCondensed
 /ZurichBT-RomanExtended
 /ZurichBT-UltraBlackExtended
]
 /NeverEmbed [true
 /TimesNewRomanPS
 /TimesNewRomanPS-Bold
 /TimesNewRomanPS-BoldItalic
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-Italic
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
]
 /AntiAliasColorImages false
 /CropColorImages false
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages false
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages false
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 2400
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox false
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (U.S. Web Coated \050SWOP\051 v2)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /Unknown

 /CreateJDFFile false
 /Description <<
 /DAN <FEFF004200720075006700200064006900730073006500200069006e0064007300740069006c006c0069006e006700650072002000740069006c0020006100740020006f0070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d006500640020006800f8006a006500720065002000620069006c006c00650064006f0070006c00f80073006e0069006e006700200066006f00720020006100740020006600e50020006200650064007200650020007500640073006b00720069006600740073006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e0020005000440046002d0044006f006b0075006d0065006e00740065006e0020006d00690074002000650069006e006500720020006800f60068006500720065006e002000420069006c0064006100750066006c00f600730075006e0067002c00200075006d002000650069006e0065002000760065007200620065007300730065007200740065002000420069006c0064007100750061006c0069007400e400740020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f0062006100740020006f0064006500720020006d00690074002000640065006d002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF0055007300650020006500730074006100730020006f007000630069006f006e006500730020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006e0020006d00610079006f00720020007200650073006f006c00750063006900f3006e00200064006500200069006d006100670065006e00200070006100720061002000610075006d0065006e0074006100720020006c0061002000630061006c006900640061006400200061006c00200069006d007000720069006d00690072002e0020004c006f007300200064006f00630075006d0065006e0074006f00730020005000440046002000730065002000700075006500640065006e00200061006200720069007200200063006f006e0020004100630072006f00620061007400200079002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF004f007000740069006f006e00730020007000650072006d0065007400740061006e007400200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000500044004600200064006f007400e900730020006400270075006e00650020007200e90073006f006c007500740069006f006e002000e9006c0065007600e9006500200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200061006d00e9006c0069006f007200e90065002e00200049006c002000650073007400200070006f0073007300690062006c0065002000640027006f00750076007200690072002000630065007300200064006f00630075006d0065006e007400730020005000440046002000640061006e00730020004100630072006f0062006100740020006500740020005200650061006400650072002c002000760065007200730069006f006e002000200035002e00300020006f007500200075006c007400e9007200690065007500720065002e>
 /ITA <FEFF00550073006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000500044004600200063006f006e00200075006e00610020007200690073006f006c0075007a0069006f006e00650020006d0061006700670069006f00720065002000700065007200200075006e00610020007100750061006c0069007400e00020006400690020007300740061006d007000610020006d00690067006c0069006f00720065002e0020004900200064006f00630075006d0065006e00740069002000500044004600200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF3053306e8a2d5b9a306f30019ad889e350cf5ea6753b50cf3092542b308000200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e30593002537052376642306e753b8cea3092670059279650306b4fdd306430533068304c3067304d307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e30593002>
 /NLD <FEFF004700650062007200750069006b002000640065007a006500200069006e007300740065006c006c0069006e00670065006e0020006f006d0020005000440046002d0064006f00630075006d0065006e00740065006e0020007400650020006d0061006b0065006e0020006d00650074002000650065006e00200068006f0067006500720065002000610066006200650065006c00640069006e00670073007200650073006f006c007500740069006500200076006f006f0072002000650065006e0020006200650074006500720065002000610066006400720075006b006b00770061006c00690074006500690074002e0020004400650020005000440046002d0064006f00630075006d0065006e00740065006e0020006b0075006e006e0065006e00200077006f007200640065006e002000670065006f00700065006e00640020006d006500740020004100630072006f00620061007400200065006e002000520065006100640065007200200035002e003000200065006e00200068006f006700650072002e>
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f00700070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d006500640020006800f80079006500720065002000620069006c00640065006f00700070006c00f80073006e0069006e006700200066006f00720020006200650064007200650020007500740073006b00720069006600740073006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f0067002000730065006e006500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300740061007300200063006f006e00660069006700750072006100e700f5006500730020007000610072006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006d00200075006d00610020007200650073006f006c007500e700e3006f00200064006500200069006d006100670065006d0020007300750070006500720069006f0072002000700061007200610020006f006200740065007200200075006d00610020007100750061006c0069006400610064006500200064006500200069006d0070007200650073007300e3006f0020006d0065006c0068006f0072002e0020004f007300200064006f00630075006d0065006e0074006f0073002000500044004600200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002c002000520065006100640065007200200035002e0030002000650020007300750070006500720069006f0072002e>
 /SUO <FEFF004e00e4006900640065006e002000610073006500740075007300740065006e0020006100760075006c006c006100200076006f0069006400610061006e0020006c0075006f006400610020005000440046002d0061007300690061006b00690072006a006f006a0061002c0020006a006f006900640065006e002000740075006c006f0073007400750073006c00610061007400750020006f006e0020006b006f0072006b006500610020006a00610020006b007500760061006e0020007400610072006b006b007500750073002000730075007500720069002e0020005000440046002d0061007300690061006b00690072006a0061007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f006200610074002d0020006a00610020004100630072006f006200610074002000520065006100640065007200200035002e00300020002d006f0068006a0065006c006d0061006c006c0061002000740061006900200075007500640065006d006d0061006c006c0061002000760065007200730069006f006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006e00e40072002000640075002000760069006c006c00200073006b0061007000610020005000440046002d0064006f006b0075006d0065006e00740020006d006500640020006800f6006700720065002000620069006c0064007500700070006c00f60073006e0069006e00670020006f006300680020006400e40072006d006500640020006600e50020006200e400740074007200650020007500740073006b00720069006600740073006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e0020006b0061006e002000f600700070006e006100730020006d006500640020004100630072006f0062006100740020006f00630068002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006100720065002e>
 /ENU (Use these settings for creating PDF files for submission to The Sheridan Press. These settings configured for Acrobat v6.0 08/06/03.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AllowImageBreaks true
 /AllowTableBreaks true
 /ExpandPage false
 /HonorBaseURL true
 /HonorRolloverEffect false
 /IgnoreHTMLPageBreaks false
 /IncludeHeaderFooter false
 /MarginOffset [
 0
 0
 0
 0
]
 /MetadataAuthor ()
 /MetadataKeywords ()
 /MetadataSubject ()
 /MetadataTitle ()
 /MetricPageSize [
 0
 0
]
 /MetricUnit /inch
 /MobileCompatible 0
 /Namespace [
 (Adobe)
 (GoLive)
 (8.0)
]
 /OpenZoomToHTMLFontSize false
 /PageOrientation /Portrait
 /RemoveBackground false
 /ShrinkContent true
 /TreatColorsAs /MainMonitorColors
 /UseEmbeddedProfiles false
 /UseHTMLTitleAsMetadata true
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /BleedOffset [
 0
 0
 0
 0
]
 /ConvertColors /NoConversion
 /DestinationProfileName (sRGB IEC61966-2.1)
 /DestinationProfileSelector /NA
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements true
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles true
 /MarksOffset 6
 /MarksWeight 0.250000
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /DocumentCMYK
 /PageMarksFile /RomanDefault
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /LeaveUntagged
 /UseDocumentBleed false
 >>
]
 /SyntheticBoldness 1.000000
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

