
A methodological approach for model
validation in faster than real-time simulation

Dimosthenis Anagnostopoulos

Department of Informatics, University of Athens, Panepistimiopolis, Athens 15771, Greece

Received 12 November 2001; received in revised form 1 March 2002

Abstract

When successfully dealing with time constraints, faster than real-time simulation (FRTS)

improves process control capabilities through providing short-term predictions. Validation

of a simulation model is accomplished through comparing system observations and model

data corresponding to the same time points. A methodological approach is necessary for

the realization of this comparison, considering the time-dynamic system behaviour and the po-

tential deviations between the model and the system. A seven-step method is proposed, em-

phasizing the following issues: determining when predictions should be considered as valid,

accomplishing validation on the basis of the available model and system data, considering that

not all deviations between the model and the system are of equal significance, and indicating

potential system changes, so that the model can be modified in real time. Computer networks

are used as an example domain, due to their multi-entity structure and time-dynamic behav-

iour, offering excellent test cases for evaluating the proposed method. Experimental FRTS re-

sults from the application of the proposed method to the network domain are also presented.

� 2002 Elsevier Science B.V. All rights reserved.

Keywords: Faster than real-time simulation; Simulation methodology; Validation; Network simulation;

Systems modelling

1. Introduction

Real-time simulation is widely used for the performance evaluation of systems be-

haviour in real time. Accomplishing real-time experimentation depends on the sys-

tem speed and nature, which determines the allowed degree of human interaction

with the system. When attempting to reach conclusions for the system behaviour

E-mail address: dimosthe@di.uoa.gr (D. Anagnostopoulos).

1569-190X/02/$ - see front matter � 2002 Elsevier Science B.V. All rights reserved.

PII: S1569-190X(02 )00091-6

Simulation Modelling Practice and Theory 10 (2002) 121–139

www.elsevier.com/locate/simpat

mail to: dimosthe@di.uoa.gr


in the near future, faster than real-time simulation (FRTS) is used, where advance-

ment of simulation time occurs faster than real-world time. Making models run

faster is the modeller�s responsibility and a rather demanding task, as real-time sys-
tems often have hard requirements for interacting with the human operator or other

agents. Relevant methodological issues have been discussed by Fishwick, who also

proposed a multimodelling methodology based on the idea of selecting the appropri-

ate model among multiple model types through trading structural information for

faster runtime [1].
Validation is the process of determining whether a simulation model is an accu-

rate representation of the system for the particular objectives of the study [2]. If

the model is valid, it can be used to make decisions about the system. In FRTS,

we have the unique capability to use system observations and model results both

to test model validity and––in case of a valid model––to use simulation predictions

to estimate future states of the system. This is based on the simple assumption that, if

model validity can be consecutively ensured up to the current real-time point, it

would be most probable that simulation predictions are also valid.
In this paper, a methodological approach for model validation in FRTS is pre-

sented, aimed at increasing our level of confidence for the predictions for a time-

dynamic system under study. To achieve this, the model has to be validated in real

time through obtaining and comparing system observations and model data. Despite

the broad use of FRTS, there is no methodology describing how validation can be

accomplished in FRTS experiments and, in particular, how this comparison should

be realized. The closest work is that of Gaafa, who introduced a practical approach

for maintaining the validity of simulation models during the simulation run, empha-
sizing the mathematical methods [3]. Provided that the system under study is observ-

able (i.e. system observations can be obtained whenever required), the methodology

proposed in this paper can be applied in diverse domains, which ensures its portabil-

ity and scalability. Issues such as when the model should be considered as valid and

how validation should be performed in order to indicate potential system changes

are also addressed. Results from a prototype simulation experiment on a computer

network are presented. As computer networks are multi-entity systems, they offer the

capability to deal with the various types of structure and operation parameter
changes that may occur. The issue of making the network model run faster than

the system is not discussed in this paper, as achieving FRTS cannot be pre-assured.

However, methodological approaches based on selecting the optimal model from a

set of models employing a degree of abstraction are discussed in [1,4]. An alternative

method suggesting the use of a single model type and multiple methods generated

through approximation techniques is presented in [5].

In the following section, a conceptual methodology for conducting FRTS exper-

iments is introduced and model validation issues are discussed. A methodological ap-
proach for model validation is presented in Section 3. Accomplishing validation

according to the proposed method is examined in Section 4, in terms of a prototype

application in the network domain. The simulation environment developed for this

objective and experimental results are described in Section 5, while conclusions are

presented in Section 6.

122 D. Anagnostopoulos / Simulation Modelling Practice and Theory 10 (2002) 121–139



2. Faster than real-time simulation

When successfully dealing with time constraints, FRTS improves process control

capabilities through providing short-term predictions. Experimentation is the most

critical phase. A methodological framework has been proposed for conducting

faster than real-time experiments, also considering the dynamic system behaviour

[6]. An important category of system dynamics is structure variability. Variable

structure models are thus used in simulation modelling, entailing in their description
the possibility to change their own structure, i.e. their constitutive components as

well as the relations that exist amongst them, corresponding to system changes [7].

Change of structure refers to the addition or deletion of single components [8], the

change of interactions between components or the change of rules of behaviour

[9]. Problems of model variation have been discussed within the context of object-

oriented modelling, such as in the case of DEVS [10] and EMSY [11], mostly for con-

trol purposes.

The basic concept in the FRTS methodology is making dynamic systems serve as
an information source, instead of adopting a doubtful statistical representation of

their stochastic behaviour. The term non-predetermined or time-dynamic systems is

used to denote actual systems that may be reformed during their evolution [6,12].

Reformations involve key features of a system, such as the system structure and op-

eration parameters. Structure reformations involve not only the system components,

but also the coupling relationships between them. Structure and operation parameter

reformation types are thus distinguished.

The FRTS methodology consists of four phases: modelling, experimentation, re-
modelling and plan scheduling [6]. To compare the corresponding system and model

states, both the system and the model are monitored during experimentation phase.

System observations and model data are obtained within predetermined time inter-

vals of equal length, called auditing intervals. In the case where the model states de-

viate from the corresponding system states, the model needs to be changed and thus

remodelling is invoked. Deviations may be encountered due to system modifications,

involving the system structure and operation parameters [6]. Remodelling modifies

the model to depict the current system state. This is accomplished without terminat-
ing the real-time experiment, since no recompilation is performed. When model

modifications are completed, experimentation resumes. Remodelling can also be in-

voked when deviations occur due to the stochastic nature of simulation, even when

reformations have not been detected (i.e. system parameters/components have not

been modified). In case none of the above has occurred and the simulation model

is considered to be valid, the plan scheduling phase is invoked to take advantage

of short-term predictions [6].

To conclude on system reformations, specific measures of the system and the
model are monitored. The variables used to obtain the corresponding values are re-

ferred as monitoring variables. Monitoring variables should be considered at a con-

ceptual level, as they do not follow the single-valued definition of program variables.

Auditing examines monitoring variables corresponding to the same real-time points,

and concludes on the validity of the model and predictions, as depicted in Fig. 1.

D. Anagnostopoulos / Simulation Modelling Practice and Theory 10 (2002) 121–139 123



The evolution of the system and the model is depicted at the two horizontal axes.

Real-time points are noted as ti. The state of the system at point ti is noted as Ri and

the state of the model as Si. When at time point tx the model predicts the system state

at point tn (simulation time is equal to tn), the notation SimðtxÞ ¼ tn is used. Thus,
auditing process compares states Sx and Rn at time point tn. If auditing detects that
reformations or deviations have occurred, remodelling is invoked and the model

composition scheme is modified [10]. When modifications are accomplished, the

model is once more subjected to experimentation, starting from the current real-time

point. Experimentation phase control flow in FRTS is depicted in Fig. 2. Timing is-

sues concerning the execution of auditing and remodelling are discussed in [13]. As

executing remodelling has an impact on the performance of simulation within this

particular auditing interval, a method ensuring that FRTS is accomplished within
the given time frame has also been introduced [13]. The performance of simulation

within other auditing intervals is not affected.

The author argues that FRTS should be widely considered as a terminating sim-

ulation, which imposes that n independent replications are made. Each replication is

terminated by a ‘‘natural’’ event that is scheduled for execution when simulation

time reaches the predicted time points. Beginning with the same initial conditions,

replications produce n observation sequences.

Suppose that MV1;MV2; . . . ;MVk are the monitoring variables used for the pur-
poses of a FRTS experiment. Each variable MVi is practically distinguished into

two separate values MViðrÞ and MViðsÞ for the system and the model, respectively.

MViðrÞ is calculated as a function of either a single-valued variate (performance mea-
sure or system parameter) or multiple system observations Ri1;Ri2; . . . , and in this

Fig. 1. Experimentation in faster than real-time simulation.

124 D. Anagnostopoulos / Simulation Modelling Practice and Theory 10 (2002) 121–139



case MViðrÞ ¼ fiðRi1;Ri2; . . .Þ. MViðsÞ can also be calculated as a function of either a
single-valued variate or an output stochastic process. As n replications are executed,

MViðsÞ is calculated in the end as a function of n stochastic processes. In FRTS, the

number of observations per run is not the same, as simulation ends at a specific sim-

ulation time point, without considering the current status of system entities, such as

the number of customers that have been served in a GI/G/s system. Replication

Fig. 2. Control flow of experimentation phase.

D. Anagnostopoulos / Simulation Modelling Practice and Theory 10 (2002) 121–139 125



results are thus extracted from k1; k2; . . . ; kn observations. Considering that the out-
put process of each replication produces a single statistical sample Sij

Sij ¼ gðSij1; Sij2; . . . ; SijkjÞ

MViðsÞ ¼ sumðSi1; Si2; . . . ; SinÞ=n

The issue of comparing system observations and simulation results has been thor-

oughly examined in the literature and various methods have been proposed depend-

ing on the nature of the problem. Law and Kelton provide an excellent review [2]. A

confidence interval approach based on independent data proves to be a well-suited

solution. As statistical methods have been widely discussed, this issue is not further

emphasized. However, there is no simulation methodology focusing on model vali-
dation, accomplished through comparing FRTS results and system observations.

Provision of a generic validation method is thus required to accomplish validation

for diverse applicable domains on the basis of the available system and model data.

The following requirements must be met to establish such a method:

1. Remodelling conditions must be expressed in a formal way in terms of system and

model data. A deviation range must be allowed for each comparison between the

corresponding data.
2. Model validity must be determined considering two types of remodelling condi-

tions: the ones that––if fulfilled––autonomously cause remodelling, and the ones

that are aggregately evaluated to decide whether remodelling is required. For the

latter case, discrimination between conditions must be enabled, as certain condi-

tions may be considered as more crucial than others.

3. Indication of the specific conditions causing remodelling must be enabled in

order to incorporate system structure and operation parameter changes within

the model.
4. A formal algorithm and appropriate data structures must be introduced for real-

izing the comparison between model and system data.

3. Validation method

The following seven-step method is proposed for realizing model validation in

FRTS:

1. Determining remodelling conditions: involves distinguishing the two types of re-

modelling conditions: conditions that autonomously cause remodelling (OR con-

ditions) and conditions that do not (AND conditions). Remodelling conditions

specify whether the model should be considered as valid or invalid at a conceptual

(i.e. descriptive) level.

2. Determining monitoring variables: involves the selection of the appropriate mon-

itoring variables amongst the available system and model data.

126 D. Anagnostopoulos / Simulation Modelling Practice and Theory 10 (2002) 121–139



3. Expressing conditions through monitoring variables: involves the conversion of re-

modelling conditions into well-formed expressions through the use of monitoring

variables. A single condition may involve more than one monitoring variables and

a single variable may be used by more than one condition. This step also includes

the specification of the allowed deviation range for each comparison.

4. Determining how much each condition contributes to the remodelling decision: in-

volves discriminating among the conditions that do not autonomously cause re-

modelling. As conditions are not equally significant, a weight factor must be
assigned to each AND condition.

5. Constructing the auditing tree: the auditing tree is the structure maintaining sys-

tem and model monitoring variables.

6. Forming the auditing algorithm: the auditing algorithm is automatically formed

through accessing the auditing tree nodes, providing a low-level description of

monitoring variable comparison.

7. Executing the auditing algorithm through accessing the auditing tree.

Selection of the deviation range depends on the nature of the experiment (i.e. how

close should model states be to system states) and the specific method used to com-

pare system observations and model data. For instance, in a basic-inspection-

approach comparison, deviation range determines the lower and upper endpoints

of the interval ½lðMViðrÞÞ; uðMViðrÞÞ� and the model is considered as valid when
MViðsÞ 2 ½lðMViðrÞÞ; uðMViðrÞÞ�. When assigning weight factors to AND conditions,

validation is performed using a scoring method [14]. Weights (or scores) are deter-

mined subjectively when conducting various aspects of the validation process and
then combined to determine an overall score for the model. The model is considered

as valid when this score is higher (or lower) than a threshold [15].

The auditing algorithm and auditing tree concepts are introduced for realizing the

comparison between model and system data. The auditing tree (Fig. 3) is a dynamic

structure. It is built whenever auditing is initiated according to the following speci-

fications. When auditing terminates, the auditing tree is removed.

Fig. 3. Auditing tree structure.

D. Anagnostopoulos / Simulation Modelling Practice and Theory 10 (2002) 121–139 127



1. The auditing tree is a conceptual tree structure (that is, it does not follow the for-

mal definition of a tree). It is divided into two subtrees and includes two corre-

sponding types of end nodes, OR and AND. End nodes of type OR represent

conditions that autonomously––if fulfilled––cause remodelling. Nodes of type

AND are aggregately evaluated to determine if remodelling is required. End nodes

are directly accessed from Root––note that the two nodes named OR and AND in

Fig. 3 are used to denote the corresponding subtrees and are not actually imple-

mented. There are a1 OR nodes and a2 AND nodes, all of which are created as
children of Root. In this way, a1 þ a2 total accesses are required for all nodes.
The number of tree nodes may be varying whenever auditing is performed.

2. Each end node corresponds to a single condition, which is expressed through the

appropriate monitoring variables. However, a single condition may be expressed

via more than one end node. End nodes are created and inserted in the appropri-

ate subtree whenever an auditing tree is formed.

3. End node has the following structure: (condition, system value, model value, devi-

ation range, [weight]) where weight field is used only for AND nodes, indicating the
significance of each specific comparison for the remodelling decision. This struc-

ture corresponds to a basic-inspection-approach comparison between simulation

data and real observations [2].

A code fragment for the implementation of auditing tree structures as Modsim III

object classes is depicted in Fig. 4.

As nodes are directly accessed from Root, the total number of accesses required

for tree nodes is a1 þ a2. Accessing all nodes, we ensure that all remodelling condi-
tions are evaluated prior to the initiation of remodelling and all reformations/devi-

ations are detected, so that appropriate remodelling actions can be considered.

Fig. 4. Auditing tree implementation.

128 D. Anagnostopoulos / Simulation Modelling Practice and Theory 10 (2002) 121–139



Upon completion of auditing, end nodes are removed. The auditing algorithm con-

cludes that the model is invalid if at least one OR condition is fulfilled or the aggre-

gate evaluation of AND conditions is fulfilled, that is

ðC1 ¼ TRUE OR C2 ¼ TRUE � � �OR Ca1 ¼ TRUE

OR evaluation ðCi;Cii; . . . ;Ca2Þ ¼ TRUEÞ;

where C1;C2; . . . ;Ca1 are OR nodes and Ci;Cii; . . . ;Ca2 are AND nodes.

A sample auditing algorithm implementation is thus depicted in Fig. 5.

Another alternative that may be considered is to search the auditing tree for a sin-

gle condition that may be fulfilled, and then invoke remodelling without accessing

the overall tree structure. This would be acceptable if accomplishing remodelling

does not impose that all remodelling conditions are previously detected, e.g. for re-

ducing the time overhead. In this case, the auditing tree structure provides substan-
tial capabilities for improving auditing performance, as the auditing algorithm

would first search the OR subtree and then the AND subtree, while immediately ter-

minate if a single remodelling condition was fulfilled. Depending on the nature of the

experiment, the cost of such a search could be considerably less than the a1 þ a2 ac-
cesses required in the general case. The auditing algorithm used also has an impact

on remodelling, as remodelling becomes aware of either one or all fulfilled remodel-

ling conditions. In the first case, remodelling rebuilds the overall model on the basis

of the current system state. In the later, it is possible for remodelling to modify only
the model features indicated by remodelling conditions. In this way, if conditions

that were fulfilled only involve operation parameters, rebuilding the overall model

structure would not be required, which results in a performance increase.

Fig. 5. Auditing algorithm implementation.

D. Anagnostopoulos / Simulation Modelling Practice and Theory 10 (2002) 121–139 129



4. A network FRTS example

Computer networks are used as an example domain for applying FRTS, as net-

works have a multi-entity structure and time-dynamic behaviour, offering excellent

test cases for evaluating the proposed method. Potential variations that may occur

in a time-dynamic system are discussed in [12], while a formal description of struc-

ture variability is provided in [7].

A discrete layering scheme of computer networks emphasizing communication-
related issues is considered [16]. Network entities are protocols, communication

and processing nodes, communication links and applications [17]. Network models

consist of composite (coupled) and primitive (atomic) models. Applications and

communication links are perceived as primitive entities. Network nodes are decom-

posed in terms of their communication elements (that is, the protocol stack) and net-

work applications.

An object-oriented modelling scheme described in [18] is adopted. A network N

consists of n1; n2; . . . ; nk processing nodes. The communication element is formed
as a sequence of protocols pr1; pr2; . . . ; prn, starting from the lowest (MAC) layer.

Since nodes are identical in communication aspects, network N ¼ fni; 16
i6 kg and ni ¼ ðpr1; pr2; . . . ; prnÞ. The widely used TCP/IP stack along with an ether-
net protocol could thus be represented as (10BaseT, IP, TCP). In this way, it is pos-

sible to build stacks representing the acceptable protocol combinations up to the

highest supported layer. Applications can be viewed as sockets operating above

the transport layer. Each node ni is thus linked to a set of applications Ai ¼
fai1; ai2; . . . ; aixig, where xi is the number of applications of ni. The overall composi-
tion scheme of a computer network is given in Fig. 6.

Fig. 6. Network composition tree.

130 D. Anagnostopoulos / Simulation Modelling Practice and Theory 10 (2002) 121–139



The requirements for handling network modifications and ensuring model validity

are supported through the use of modular models that have a hierarchical structure,

according to which components are coupled together to form larger models [10].

This is accomplished using preconstructed model components, which are organized

in object hierarchies and reside in model libraries. Preconstruction of primitive and

composite models is enabled for all higher level entities, corresponding to the valid

primitive entity combinations, and extends to the level where structural modifica-

tions may be encountered.
Network changes that must be considered involve the following structure and op-

eration parameter changes: (a) node activation/deactivation (crash or shutdown), (b)

initiation/termination of critical applications and (c) modification of application

load. The term critical is used to denote applications having a considerable network

load, as there are also applications of no practical impact. Node activation and de-

activation, application initiation and termination are structure reformations. Other

cases, such as application load modification, are operation parameter reformations.

Depending on the reformation type, the model is appropriately modified during re-
modelling via either structure modifications or operation parameter value modifica-

tion. To give an example, a network with four nodes and the corresponding

applications is depicted in Fig. 7. The network is subjected to the following changes:

node2 and node4 are deactivated and node5 is activated. Applications of node2 and
node4 are thus terminated. Note that other applications exchanging data with these
nodes (i.e. appl12) are also terminated.
The following symbolism is used to discuss the proposed method. Let Snode ¼

fni; 16 i6 sg be the set of nodes in the simulation model, and Rnode ¼
fni; 16 i6 rg the corresponding set in the network. Then, nodeðSÞ and nodeðRÞ de-
note the cardinality of Snode and Rnode, respectively. The set of critical applications

operating on all model nodes is noted as Sappl, where an application is considered as

critical––in the model or the network, respectively––when the number of data units

(packets) or bits transmitted exceeds a predetermined threshold. The notation

aðSjRÞ:field denotes an attribute of application a in the model or the network, re-

spectively, e.g. aðSÞ:bits. Also, thrputðSÞ:packets and thrputðSÞ:bits denote the aggre-
gate number of packets/bits transmitted in the model, so that

thrputðSÞ:packets ¼
Xs

i¼1

Xs

j¼iþ1
lijðSÞ:packets; thrputðSÞ:bits ¼

Xs

i¼1

Xs

j¼iþ1
lijðSÞ:bits;

lij denoting the load between nodes ni and nj. Then,

thrputðRÞ:packets ¼
Xr

i¼1

Xr

j¼iþ1
lijðRÞ:packets; thrputðRÞ:bits ¼

Xr

i¼1

Xr

j¼iþ1
lijðRÞ:bits:

The proposed method is applied on the network example of Fig. 7. Remodelling

conditions and the corresponding reformation types are presented in Table 1 (step 1).
Remodelling conditions involve structure reformations, operation parameter refor-

mations and deviations between the network and the model. In the general case, con-

ditions of the same reformation type are not of equal significance. For instance, both

D. Anagnostopoulos / Simulation Modelling Practice and Theory 10 (2002) 121–139 131



node activation and application termination are structure reformations, but only

node activation is characterized as an OR condition. Monitoring variables are pre-

sented in Table 2 (step 2).

Fig. 7. Structure variation example.

Table 1

Remodelling conditions

Condition Reformation Type Weight

1 Node activation/deactivation Structure reformation OR –

2 Application initiation/termination Structure reformation AND wa

3 Modification of application load Operation parameter reformation OR –

4 Deviation in aggregate throughput Deviation AND wt1, wt2

132 D. Anagnostopoulos / Simulation Modelling Practice and Theory 10 (2002) 121–139



Remodelling conditions are expressed using monitoring variables as depicted in

Table 3 (step 3). To examine condition 3, for instance, real observations and simu-

lation results are compared, concerning the packets transferred through application

a, noted as aðSÞ:packets and aðRÞ:packets, respectively. The deviation range is noted as
da. Using the basic inspection method to implement this comparison, condition

3 is fulfilled when deviatesðaðRÞ:packets; aðSÞ:packets; daÞ ¼ TRUE () aðSÞ:packets 62
½aðRÞ: packetsð1� daÞ; aðRÞ:packetsð1þ daÞ�.
The allowed deviation range varies according to the orientation of the simulation

experiment. Lower values contribute to the reliability of simulation predictions but

lead more frequently to remodelling, especially for OR nodes, which causes results to

be discarded. High values have opposite effects. The lowest limit (0.0) is used when

no deviation is acceptable, as for the number of nodes. In Table 3, conditions 1 and 2
are expressed differently than the others to indicate that deviation range is equal

to 0.0. Weight values assigned to AND conditions are depicted in the last column

of Table 1 (step 4).

An instance of the auditing tree is presented in Fig. 8 (step 5). This tree is formed

after the structure variation depicted in Fig. 7. There are only two common applica-

tions in the network and the model, and thus four OR nodes are needed to examine

application load modification. Deviation in the aggregate throughput (condition 4) is

also represented as two AND nodes.
Remodelling is invoked according to the auditing algorithm presented in

Fig. 9, which is automatically formed according to this auditing tree (step 6). Finally,

Table 2

Monitoring variables

Monitoring Variables Representation

MV1 Active nodes nodeðSjRÞ
MV2 Critical applications applðSjRÞ
MV3 Packets transmitted by a aðSjRÞ:packets
MV4 Bits transmitted by a aðSjRÞ:bits
MV5 End-to-end delay of a aðSjRÞ:delay
MV6 Aggregate throughput (packets) thrputðSjRÞ:packets
MV7 Aggregate throughput (bits) thrputðSjRÞ:bits

Table 3

Expressing remodelling conditions through monitoring variables

Condition Expression

1 Node activation/deactivation nodeðRÞ! ¼ nodeðSÞ
2 Application initiation/termination applðRÞ! ¼ applðSÞ
3 Critical modification of application load 8a 2 Sappl;Rappl

1. deviatesðaðRÞ:bits; aðSÞ:bits; da1Þ
2. deviatesðaðRÞ:packets; aðSÞ:packets; da2Þ

4 Deviation in aggregate throughput 1. deviatesðthrputðRÞ:packets; thrputðSÞ:packets; dt1Þ
2. deviatesðthrputðRÞ:bits; thrputðSÞ:bits; dt2Þ

D. Anagnostopoulos / Simulation Modelling Practice and Theory 10 (2002) 121–139 133



at step 7, the auditing algorithm is executed through accessing the auditing tree

nodes.

5. Simulation environment and results

A prototype FRTS experiment for a local network environment was performed.

The implementation domain was the TCP/IP local network of a university campus

building, consisting of 10Base segments. The simulation environment architecture

Fig. 9. Auditing algorithm of the network example.

Fig. 8. Auditing tree instance.

134 D. Anagnostopoulos / Simulation Modelling Practice and Theory 10 (2002) 121–139



is illustrated in Fig. 10. Connections between modules indicate information flows

and module invocations. Network monitoring is accomplished through SunNet

Manager NMS. Network monitoring and auditing tools are implemented in C. Re-

modelling tool is integrated within the modelling platform to enhance interaction

with the model. Simulation is executed on a single workstation. Monitoring results

are forwarded to the FRTS environment when the auditing interval elapses.
A significant issue that must be addressed in FRTS is the length of the auditing

interval. A short interval results in the following disadvantages: (a) frequent audit-

ing, before a considerable amount of data is collected and (b) wasting time, since ex-

ecution of auditing––and potentially remodelling––has a time overhead and no other

activity can be carried out in parallel. The selection of a 10 s interval falls in this cat-

egory. On the other hand, if a long interval were used, the simulation environment

would not be aware of important events, such as a node crash, for a considerable

time period. The selection of a 5 min monitoring interval would fall in this category.
Based on a number of initial trials to ensure the feasibility of the experiment, a 60 s

auditing interval was used.

Sample simulation results to indicate the nature of a FRTS experiment are pre-

sented. In Fig. 11, the number of applications in the model and the network are plot-

ted for 17 consecutive monitoring intervals. In model validation, remodelling is often

caused, as marked with the dark rectangles, due to the variation in the number of

active sessions, even within neighbouring intervals (note that only application re-

modelling cases are marked). In time points 184 and 308, there are 40 and 33 active
sessions, respectively, while during the intermediate interval only seven active ses-

sions seem to exchange data. Whenever this occurs, models of applications that

are no longer active are removed and new application models are initialised and in-

tegrated within the aggregate network model. Experimentation then resumes.

Model and system aggregate throughput is plotted in Fig. 12 for 19 consecutive

monitoring intervals. During the first 10 monitoring intervals, variation of the actual

throughput is relatively low. However, low deviation parameter values were used,

Fig. 10. Simulation environment architecture.

D. Anagnostopoulos / Simulation Modelling Practice and Theory 10 (2002) 121–139 135



forcing the model to be frequently subjected to remodelling, as indicated with the

dark rectangles. During the late intervals, where traffic is increased, higher values

were used. Simulation results were compared against network data to validate the

model within consecutive auditing intervals. When the model repeatedly proves to

be valid, short-term predictions were also assumed to be reliable. At point 1180,
for instance, simulation results indicate that a bottleneck might occur, due to the

load caused by a specific application, within the consecutive two intervals (an aggre-

gate throughput of 12,000 KB is expected at time point 1299). In this case, plan

Fig. 11. Application number variation.

Fig. 12. Throughput variation.

136 D. Anagnostopoulos / Simulation Modelling Practice and Theory 10 (2002) 121–139



scheduling is invoked to take advantage of predictions and propose an appropriate

plan. This plan may be employed at the network management level, as simulation

has no administrative authority on the system under study. Simulation focuses on

reaching faster than real-time results and ensuring the validity of the model, but does

not consider further actions after predictions are forwarded to plan scheduling.

In the experiments presented in Fig. 11 and Fig. 12, remodelling was caused due

to application initiation/termination and deviations in the aggregate throughput.

Even though the number of active nodes was not modified, the time-dynamic net-
work behaviour resulted in numerous remodelling cases. Even after remodelling,

where simulation is re-initiated, short-term predictions were reached for at least

two auditing intervals ahead of real time. In model validation, the number of audit-

ing tree nodes was modified according to the varying number of applications. For

instance, considering that in Fig. 11 the number of common applications in the mod-

el and the network ranged from to 6 to 41, the tree had 16 end nodes at point 308 and

86 end nodes at point 123. Variation in the number of auditing tree end nodes for

this experiment is presented in Fig. 13. Throughout all FRTS experiments, the num-
ber of auditing tree end nodes ranged from 6 to 136.

FRTS was exercised in two different ways. In the first case, depicted in Fig. 11 and

Fig. 12, auditing searched the entire tree to detect all remodelling conditions. The

time required to accomplish both auditing and remodelling varied according to

the number of tree nodes, but was always less than 2 s, which was acceptable com-

pared to the 60 s auditing interval. In the second case, the auditing tree was searched

for a single condition that could be fulfilled, starting from the OR subtree. Remod-

elling was then invoked, without accessing the overall tree structure. In this case, re-
modelling was not aware of all remodelling conditions, but was invoked with a

considerable lower time overhead, which could be crucial for specific application do-

mains. In the above example, remodelling was invoked after searching less than half

of the OR nodes, and the time overhead was respectively reduced to less than 1 s.

Fig. 13. Auditing tree end nodes.

D. Anagnostopoulos / Simulation Modelling Practice and Theory 10 (2002) 121–139 137



6. Conclusions

A seven-step method for comparing real observations and model data was intro-

duced, being capable of dealing with the time-dynamic system behaviour. Creation

of systems models that change their components and the interactions between these

components along with their decision rules is strongly related to organisation learn-

ing, which is a significant research area in social sciences. Validation of such models

is greatly enhanced when it is possible to compare model results against real obser-
vations. As model validity must be determined on the basis of multiple output vari-

ates, which are not of equal significance, a formal algorithm and appropriate

structures were introduced for realizing this comparison. The applicability of the

proposed method was examined using the network application domain. Based on

a number of different FRTS experiments, it was concluded that, when remodelling

can be invoked without detecting all conditions causing result invalidity, as in the

case where taking advantage of reliable predictions should be instantaneous, valida-

tion is accomplished––using the auditing tree structure––far more efficiently. Porta-
bility of this method to diverse domains is ensured as long as the system under study

is observable. Transportation, manufacturing and process-control systems are con-

sidered as potential application domains. The issue of taking advantage of reliable

predictions was not considered in this paper, as it is strongly depended on the specific

application domain of the FRTS experiment.

References

[1] P. Fishwick, OOPM/RT: a multimodelling methodology for real-time simulation, ACM Transactions

on Modelling and Computer Simulation 9 (2) (1999).

[2] A.M. Law, W.D. Kelton, Simulation Modelling and Analysis, McGraw-Hill, 2000.

[3] L. Gaafar, Maintaining the validity of simulation models using predictions intervals, in: Computers

and Industrial Engineering, vol. 37, Pergamon Press, 1999, pp. 859–871.

[4] R. Cubert, P.A. Fishwick, OOPM: an object-oriented multimodelling and simulation application

framework, Simulation 70 (6) (1998) 379–395.

[5] A.J. Garvey, V.R. Lesser, Design-to-time real-time scheduling, IEEE Transactions on Systems, Man

and Cybernetics 23 (6) (1993) 1401–1502.

[6] D. Anagnostopoulos, M. Nikolaidou, P. Georgiadis, A conceptual methodology for conducting faster

than real-time experiments, SCS Transactions on Computer Simulation 16 (2) (1999) 70–77.

[7] F.J. Barros, Modelling formalisms for dynamic structure systems, ACM Transactions on Modelling

and Computer Simulation 7 (4) (1997) 501–515.

[8] F. Cellier, H. Elmqvist, Automated formula manipulation supports object-oriented continuous

system modelling, IEEE Control Systems 28 (2) (1993) 28–39.

[9] G. Lorenz, A. Urhmacher, K. Simon, H. Bossel, Application of artificial intelligence methods to the

representation and modelling of tree growth, in: Proceedings of IUFRO: Artificial Intelligence and

Growth Models for Forest Management, Vienna, Austria, 1989, pp. 121–130.

[10] B.P. Zeigler, Object-Oriented Simulation with Hierarchical Modular Models, Academic Press, 1990

(copyright by Author in 1995).

[11] A. Urhmacher, EMSY––an extended modelling system, in: Artificial Intelligence Expert Systems and

Symbolic Computing for Scientific Computation, North Holland, Amsterdam, 1992, pp. 323–332.

[12] T. Pawletta, An object oriented framework for modelling and simulation of variable structure

systems, in: Proceedings of SCSC �96, Portland, 1996, pp. 8–13.

138 D. Anagnostopoulos / Simulation Modelling Practice and Theory 10 (2002) 121–139



[13] D. Anagnostopoulos, Experiment scheduling in faster than real-time simulation, in: Proceedings of

PADS �02, IEEE Computer Press, Washington, 2002, pp. 163–171.
[14] O. Balci, How to assess the acceptability and credibility of simulation results, in: Proceedings of

WSC �89, IEEE Computer Press, 1989, pp. 62–71.
[15] R. Sargent, Verification, validation and accreditation of simulation models, in: Proceedings of

WSC �00, IEEE Computer Press, 2000, pp. 50–58.
[16] S. Jones, C. Smythe, A generic framework for the simulation analysis of protocol layered

communication systems, Simulation Series 25 (1) (1993) 183–186.

[17] J. Cramer, J. Magee, Configuring distributed systems, in: Proceedings of 5th ACM Workshop on

Models and Systems for Distributed Systems Structuring, Mont St. Michel, France, 1992, pp. 237–

245.

[18] D. Anagnostopoulos, M. Nikolaidou, An object-oriented modelling approach for dynamic computer

network simulation, International Journal of Modelling and Simulation 21 (4) (2001) 249–256.

D. Anagnostopoulos / Simulation Modelling Practice and Theory 10 (2002) 121–139 139


	A methodological approach for model validation in faster than real-time simulation
	Introduction
	Faster than real-time simulation
	Validation method
	A network FRTS example
	Simulation environment and results
	Conclusions
	References


