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Abstract 

Faster-than-real-time simulation (FRTS) can be used for 
the performance evaluation of systems behavior in real 
time, providing significant capabilities for studying 
systems with a time-varying behavior. FRTS enables 
model validation through comparing simulation results 
with the corresponding system observations. However, 
experimentation proves to be rather demanding, as both 
delivering output results and ensuring their reliability 
must be accomplished within a predetermined time frame. 
Output analysis of system observations and model results 
and relevant timing issues are discussed. A method is 
introduced that determines whether it is possible to 
execute the “optimal” faster-than-real-time experiment, 
in which case multiple replications are scheduled for 
execution, or a compromise has to be made between the 
ability to predict for the long future and the degree of 
reliability achieved for predictions. FRTS experimental 
results are also presented to support the effectiveness of 
the proposed method.  
 
 
1. Introduction  

A real-time simulator is a real-time system where some 
portions of the environment, or even portions of the real-
time system itself, are realized by a simulation model [1]. 
Evaluating the performance of the system under study in 
real time is certainly not a trivial task, depending on 
various issues, such as the system speed (i.e. how often 
state changes occur, compared to world time) and nature, 
which determines crucial issues, such as the allowed 
degree of human interaction with the system. When 
attempting to reach conclusions for the system behavior 
in the near future, faster-than-real-time simulation 
(FRTS) is widely used. In this type of simulation, 
advancement of simulation time occurs faster than real 
world time.   

Real time systems often have hard requirements for 
interacting with the human operator or other agents [2]. 
As making models run faster is the modeler's 
responsibility, a significant disadvantage is that timing 
problems are recognized during or even after testing. 
Researchers have thus pointed out that timing 
requirements should be addressed at the design phase [3]. 
Addressing timing problems at this phase, though, does 
not consider the variability in the time required to execute 
an experiment, which is caused by real conditions, such 
as arrival-process distribution parameters, which may be 
non-stationary. It does not also consider the need for 
achieving a specific degree of confidence for simulation 
results, which is calculated during the execution of the 
experiment. We thus argue that timing issues should also 
be addressed at the implementation (or execution) phase. 
The complexity of interacting in real time with the 
system, in order to conclude on the validity of the model 
and predictions, should also be addressed both at the 
methodological level and for domain-oriented 
applications, e.g. transportation, process-control systems 
and communication networks [4]. 

Timing requirements such as the following are 
considered in FRTS: the model must run faster than the 
system, system data must be obtained and processed in 
real time so that the current system state is always known, 
the model has to be adapted to the current system state 
without terminating the FRTS experiment, since the 
system under study may be a time-varying one, and 
dynamic (i.e. in real time) model modification should be 
enabled. In addition, model validity must always be 
ensured and, when simulation results are utilized to 
ensure validity, they must have the essential statistical 
properties (e.g. the appropriate sample size and statistical 
processing). Analysis of simulation results and system 
data must always be performed within the given time 
frames. Timing requirements have been addressed by 
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methodological approaches, such as [5], which is 
employed in this paper. This conceptual FRTS 
methodology provides extensions to traditional 
simulation, focusing on real-time interaction and ensuring 
the validity of simulation results. It consists of the 
following phases: modeling, experimentation and 
remodeling. The modified FRTS executive is presented in 
figure 1. The system and the model are under monitoring 
during experimentation. Data depicting their consequent 
states are obtained within predetermined time intervals of 
equal length, called auditing intervals. In case the model 
state deviates from the corresponding system state, 
remodeling is invoked. This may occur due to system 
modifications, which can involve its input data, operation 
parameters and structure [5]. In these cases, remodeling 
adapts the model to the current system state. This is 
accomplished without terminating the real time 
experiment, since no recompilation is performed. When 
model modifications are completed, experimentation 
resumes. Remodeling can also be invoked when 
deviations (expressed through appropriate performance 
measures) are indicated between the system and the 
model due to the stochastic nature of simulation, even 
when the system parameters/ components have not been 
modified. In case simulation results (predictions for the 
near future) are considered to be valid, an additional 
phase, called plan scheduling, is invoked to take 
advantage of them [5]. However, as depicted in figure 1, 
plan scheduling activities are not considered as a part of 
the FRTS environment.  

Experimentation encompasses monitoring, which is 
the activity where system and model states are obtained 
and stored while the model is executed, and auditing. 
Auditing examines if simulation results are reliable, based 
on system observations, as well as whether the system has 
been modified during the last observation. The dynamic 
system behavior may result in critical modifications in the 
system input data, operation parameters and structure. 
Structure variability, in particular, has been studied either 
at the methodological level [6], [7] or in domain-oriented 
research approaches, such as for computer networks [4]. 
To conclude about such modifications, specific attributes 
of both systems are put under monitoring. The 
corresponding variables are referred as monitoring 
variables.  Monitoring variables should be considered at a 
conceptual level, not according to the conventional, 
single-valued definition of program variables, as later 
discussed. Auditing examines the monitoring variables 
corresponding to the same real time points (i.e. the 
current system state and simulation predictions for this 
time point) and concludes for the evolution of the system 
and the model [5]. 
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Figure 1: FRTS executive 
 

An example is presented in figure 2, where the 
evolution of the system and the model is depicted at the 
two horizontal axes. Real time points are noted as ti. The 
states of the system and the model at point ti are noted as 
Ri and Si. When at tx the model predicts the system state 
at tn (simulation time is equal to tn) we use the notation 
Sim(tx)= tn. States Sx and Rn  are thus compared during 
auditing at time point tn. 

In this paper, we address timing issues of FRTS, that 
is, we state the problems encountered and propose a 
method for executing experiments conforming to the real-
time requirements. The proposed experiment scheduling 
method is independent of the execution environment, as it 



applies to both sequential and parallel execution. 
However, in the latter case, processing units must be of 
the same hardware and have the same load, as latter 
discussed. The term FRTS (or FRTS experiment) denotes 
the entire simulation process, involving model execution, 
monitoring, auditing and remodeling activities, performed 
in consecutive auditing intervals. FRTS experiments are 
terminated when termination conditions are fulfilled (e.g. 
if FRTS cannot be achieved or world time reaches a 
predetermined value). A single experiment is executed 
within each auditing interval and consists of one or 
multiple replications. We consider the case of terminating 
simulations (there is no relationship with the 
abovementioned termination conditions), which is more 
common yet more difficult to carry out, as discussed in 
section 2. Thus, each single experiment is a terminating 
simulation, imposing that multiple replications must be 
completed within the given time frame to reach 
predictions. A discussion concerning output analysis 
issues encountered in FRTS resides in section 2. Timing 
issues as well as a method for scheduling experiments and 
dealing with them are presented in section 3. Section 4 
includes experimental results and conclusions reside in 
section 5.  
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Figure 2: Experimentation in FRTS 

 
2. Output analysis 

In this section, we discuss whether FRTS should be 
considered as a terminating or non-terminating simulation 
and how simulation data and system observations are 
compared (that is, when system and model data are 
obtained and how this comparison should be performed). 
In general, the options available in designing and 
analyzing simulation experiments depend on the type of 
simulation at hand, which may be either terminating or 
non-terminating, depending on whether there is an 
obvious way to determine run length. A terminating 
simulation is one for which there is a “natural” event that 
specifies the length of each run (replication), whereas a 
non-terminating simulation is one for which there is no 

such event [8]. A performance measure for such a 
simulation is a steady state parameter if it is a 
characteristic of the steady state distribution of some 
output process. The authors argue that experiments in 
FRTS should be widely considered as terminating 
simulations due to the following:  
1. Stochastic processes for more real systems do not 

have steady-state distributions, since the 
characteristics of the system change over time [8].  

2. Observations from a particular replication are clearly 
not IID.  

3. Experiment termination, which occurs when 
simulation predictions are produced for specific 
future time points, can be considered as the 
terminating event.   

Considering FRTS as a terminating simulation 
imposes that we make n independent replications, each 
one terminated by a “natural” event that is scheduled for 
execution when simulation time reaches the predicted 
time points. Beginning with the same initial conditions, 
replications produce n observation sequences. Suppose 
that MV

1
, MV

2
, … MV

k
 are the monitoring variables used 

for the purposes of a FRTS experiment. Each variable 
MV

i
 is practically distinguished into two separate values 

MV
i
.r and MV

i
.s for the system and the model, 

respectively.  MV
i
.r is calculated as a function of either a 

single-valued variate (performance measure or system 
parameter) or multiple observations Ri1, Ri2, … from the 
system, in which case MV

i
.r = fi (Ri1, Ri2, …). MV

i
.s can 

also be calculated as a function of either a single-valued 
variate or an output stochastic process. MV

i
.s can thus be 

a function of n stochastic processes:  
Si11, Si12, Si13, Si14,  …, Si1k1 
Si21, Si22, Si23, Si24,  …, Si2k2 
Sin1, Sin2, Sin3, Sin4,  …, Si1kn 

In FRTS, the number of observations per replication is 
not the same, since simulation ends at a specific 
simulation time, no matter the current status of the system 
entities (e.g. how many customers have been serviced in a 
GI/G/s system). Replication results are thus extracted 
from k1, k2, …, kn observations. Considering that the 
output process of each replication j produces a single 
statistical sample Sij, then: 

Sij = g(Sij1, Sij2, …, Sijkj) 

MV
i
 .s  = sum (Si1, Si2, …, Sin )/n 

The issue of comparing system observations and 
simulation results has been thoroughly examined in the 
literature and various methods have been proposed 
depending on the nature of the problem. Law and Kelton 



provide an excellent review [8]. A confidence interval 
approach based on independent data proves to be a well-
suited solution. In our case, specific conditions that must 
be taken under consideration when selecting an 
appropriate statistical method are that there are n 
independent sets of data from the model but only one 
from the system and that data from the system are not 
correlated with data from the model. 

We focus on determining model and system data to be 
compared. Suppose there are no previous predictions, as 
in the case when remodeling has just been performed, and 
simulation execution starts at point tn. Since comparisons 
between model and system data are performed during 
auditing, it is reasonable to determine the predicted time 
points using the auditing interval (AudInt) as a time unit. 
When the model runs faster than the system, it reaches 
conclusions for p intervals ahead within the auditing 
interval [tn, tn+1] (figure 3). In this example, Sim(tx) = 
tn, Sim(ty) = tn+1,  Sim(tz) = tn+2.   
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Figure 3: Reaching conclusions for p intervals ahead 
 

To perform comparisons, model results are obtained at 
the corresponding real time points. Considering that n 
independent replications have to be made, model output 
MV

i
.s has to be calculated at tx, ty and tz. Note that tx, ty 

and tz are the time points where all replications must be 
completed for the corresponding predicted intervals, i.e. 
at tx, the “slowest” replication produces its output for Rn. 
There have to be p sets of output results MV

1
.s, MV

2
.s, …, 

MV
k
.s produced within a single auditing interval, as 

presented in figure 4. The discussion for calculating the 
values of MV

i
.s thus concerns each of the future states 

predicted within the intervals [tn, tx], [tx, ty], [ty, tz], etc. 
In fact, typically, we could also refer to p simulations, 
where n replications are made for each of them. In the 
next section, we discuss determining n for each specific 
replication. Except from the first interval (i.e. [tn, tx]), 
where the initial model state has to be identical to the 

corresponding system state, in all other cases, the model 
state at the end point of the previous interval serves as the 
initial state for the next one.  
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Figure 4: Output results produced for each 
predicted interval 

 
We have previously discussed the terminating event of 

each of the n replications. In fact, there have to be p 
terminating events for each “complete” (i.e. covering all 
predicted intervals) replication. The terminating event is 
the one examining when at time point tj  simulation time 
reaches the end point of the predicted interval, that is:  

Sim(tj) = tn + i*AudInt,i∈ N*,1≤  i ≤ p 
The above conclusions are reached on the basis that a 

fixed number or replications is required to reach 
predictions for each of the future system states, which is 
rather a common practice. In this way, reliability is 
ensured with the same amount of experimental results for 
each of the predicted states. The conclusions reached 
concerning the execution of an experiment within a 
specific auditing interval are used in the following to 
determine an effective way for scheduling and executing 
n replications, with respect to the timing requirements 
imposed.  

 
3. Timing issues and proposed method 

Suppose the current time is tn and we want to reach 
predictions for tk within the current auditing interval. 
Then at some future point tj, condition Sim(tj) = tk must 
be fulfilled. This introduces the issue of determining the 
prediction interval length. It is required that tj < tk , but 
the question is how much tk – tj should be. An obvious 
answer is that “predictability” must be dictated by the 
requirements imposed to simulation (e.g. in case of a 
control processes) and by the constraints imposed by the 
nature of the system (e.g. how fast the system evolves). 
On the one hand, it is evident that having (reliable) 
predictions for long intervals ahead would be desirable. 
However, the degree of reliability cannot be ensured and 
usually tends to decrease for very long predictions, 
suffering from the fact that the characteristics of real 
systems tend to change over time. On the other hand, 
timing restrictions for experimentation are increased 



when predicting long ahead, especially in cases where the 
system evolves nearly as fast as simulation.  

To discuss in depth timing issues, a specification of the 
overall control scheme of FRTS is provided in figure 5, in 
terms of a real-time data flow diagram (DFD) focusing on 
the control process and the time-consuming activities [9]. 
Suppose that simulation reaches conclusions for at least p 
auditing intervals ahead of real time. If current time is tn 
and Sim(tn) = tn (i.e. simulation is re-initiated) then, at 
some future point tj,  the following conditions must be 
fulfilled: 

Sim(tj) = tn + p*AudInt  
 tj  < tn + AudInt 

To achieve this, simulation activities that definitely 
must be accomplished before tj, as depicted in figure 5, 
are: model initialization, system monitoring and model 
monitoring. The process that accepts experiment 
parameters from the user, as discussed in paragraph 2.1, 
is accomplished prior to the initiation of the FRTS 
experiment. System monitoring is executed continuously 
and concurrently with model execution during the 
auditing interval. Thus, timing requirements involve 
model initialization and model monitoring (i.e. model 

execution and storing output results), which consume 
time equal to TInit and TExec, respectively.  

Auditing, on the other hand, does not add any time 
overhead to the experiment conducted within the current 
interval, since it is executed only when the auditing 
interval has elapsed. There are, however, requirements for 
auditing duration, as model execution is temporarily 
paused, so that conclusions for model reliability are 
reached with minimum time overhead before resuming 
experimentation. The same stands for remodeling, as it is 
executed after auditing and only when necessary. 
Evidently, model execution is also paused during 
remodeling.  Remodeling discards all previous simulation 
results and the FRTS experiment is re-initiated from the 
current real time point. We examine the detailed 
execution of monitoring, auditing and remodeling 
activities during sequential intervals using figure 6.  

Since Sim(tx) = tn and Sim(ty) = tn+1, auditing 
compares Sx with Rn at tn. Assuming that auditing 
indicates that the corresponding model and system states, 
expressed through monitoring variables MV.s and MV.r, 
do not coincide, predictions (i.e. Sy) are discarded and 
remodeling is activated to restore consistency. The time 
required is denoted as TAudit and TRemodel. The 
following are noted:  
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Figure 5: DFD specification of FRTS control 

 



1. System monitoring process is re-initiated after the 
completing of the previous auditing interval without 
waiting for the completion of auditing and 
monitoring activities. In this way, we avoid ignoring 
significant system changes during the execution of 
these activities and we ensure that auditing is always 
performed at the expected time point (i.e. tn + 
i*AudInt).  

2. Model monitoring/ execution is actually performed 
during a shorter interval than AudInt (i.e. reduced by 
TAudit and TRemodel). The duration of both auditing 
and remodeling activities should thus be considered 
when determining the available time frame for model 
execution. However, TAudit and TRemodel affect the 
next interval – not the one producing the data 
auditing and remodeling examine.  
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Figure 6: Execution of monitoring, auditing and 
remodeling within the auditing interval  

 
Formulating the timing requirements, we consider the 

worst-case scenario, which is described as follows:  
1. Both auditing and remodeling have been performed, 

consuming time equal to TAudit and TRemodel. 
Simulation time must thus be re-initiated from the 
starting point of the current auditing interval.  

2. Simulation must reach predictions for p auditing 
intervals ahead of this time point. 

The essential condition for accomplishing FRTS within 
each auditing interval is the following. 

TAudit + TRemodel  + TInit + TExec ≤ AudInt (1) 
TInit is practically equal to 0. TExec  is the time required 
to reach predictions for the p intervals ahead. As TAudit 
and TRemodel concern the previous auditing interval, 
they are already known when a new experiment is 

initiated within the current interval. We need to perform n 
independent replications. Suppose that Ti is the time 
required to execute replication i. We define  
bi = Ti / PredictedInterval, which expresses how many 
times is the system slower than simulation in each 
replication. Then,  
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value for which P[Z≤ k] = a. Thus, to perform n 
replications within the time frame given with 
probability a, the following condition must be 
fulfilled: 

nnµ)/s(λ − ≥ k (3) 
4. If condition (3) can be fulfilled, execute the rest n-no 

concurrent replications. When results from all 
replication are produced for each interval, update 
statistics (using also the results from the no 
replications) and store results. If the time consumed 
during simulation exceeds AudInt, immediately 
terminate simulation. 

5. If condition (3) cannot be fulfilled, a decision has to 
be made concerning decreasing the number of 
remaining replications (n-no) so that nnµ)/sλ −( ≥ 
k or decreasing the number of predicted intervals.  

6. Execute the remaining replications concurrently.  
When results from all replications are produced for 
each interval, update statistics (using also the results 
from the no replications) and store results. 
Meanwhile, if the time consumed exceeds AudInt, 
immediately terminate simulation.  

Using this method, we cannot be certain that results 
from all replications will be produced within the given 
time frame - in the general case, this would not be 
possible due to the stochastic nature of simulation. In any 
experiment that simulation exceeds the time frame, this 
specific experiment has to be immediately terminated. To 
ensure that results for the most immediate intervals are 
produced with an acceptable degree of reliability, which 
depends on the number of replications, concurrent 
execution of all replications is suggested. In this way, 
reliability of results for the most immediate intervals, for 
which we are mostly concerned as they are soon to be 
compared with system data, is not endangered. On the 
other hand, if some replications were not to produce 
results in the case of a sequential execution, this would 
have an impact on reliability, and potentially cause 
remodeling. This must be avoided, since all predictions 
would then have to be discarded and remodeling time 
would have to be consumed. After all, if predictions for 
“remote” intervals were not obtained, they can always be 
produced within the next auditing interval. The authors 
argue that this principle should also be adopted when 
considering whether to decrease the number of remaining 
replications or the number of predicted intervals. Thus, to 
fulfill nnµ)/s(λ − ≥ k, the value for p must be chosen 
so that: 

nµ)nAudInt(ks
RemodelTAuditTAudInt

p
+

−−
≤   (4) 

Based on the above, the proposed scheme for executing n 
independent replications is depicted in figure 7. 
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Figure 7: Proposed scheme for executing n 

replications 
 

4. Experimental results  
The proposed experiment scheduling method is 

independent of the execution environment, as it applies to 
both sequential and parallel execution. Parallel simulation 
is most suitable for executing the remaining n-no 
replications, to ensure that results for the most immediate 
intervals are produced with an acceptable degree of 
reliability (step 6). However, processing units must be of 
the same hardware and have the same load, in order to 
run each replication 1 / E(bi)  times faster than the 
system. Furthermore, when executing independent, 
sequential simulations on different processors (also 
known as replicated trials approach), a drawback is that 
each processor must contain sufficient memory to hold 
the entire simulation [10]. In the case of large-scale 
systems, TAudit and TRemodel could be considerably 
increased, but this should not be a problem as they refer 
to the previous auditing interval and are thus known when 
a new experiment is initiated in the current interval. A 
potential problem could emerge due to unreliable 
communications, especially in a LAN or WAN 
computing environment, preventing the delivery of some 
replication results. Reaching results on the basis of the 
rest no–1 or n-1 replications (provided that these are 
available) could be an acceptable solution to this problem.  

Applying the proposed method also requires that 
monitoring capabilities be provided over Ti, that is, the 
time required to execute replication i. Calculating Ti is 
rather trivial and, as numerous output variates are 



calculated within each replication, Ti can be considered as 
an additional output variate, which does not impose any 
limitation to the proposed method. We simulated the 
following network queuing models, considering a 
probability of 95% for being able to execute n 
replications within the auditing interval (a= 0.95). The 
average delay in the queue (AvgDelay) is used as an 
output variate. 

QNM1. a M/Gamma/s queuing network (using 
Kendall’s notation in classical queuing theory), that is, 
with Exponential(b) interarrival times, Gamma(α,β) 
service times and s servers, for s=64, 128, 256, with 
various values for b and α, while β = 2.0 

QNM2. a queuing network with s stations (multiple-
server/multiple-queue system) where jobs are randomly 
routed to stations, with Exponential(b) interarrival times, 
Gamma(α,β) service times, for s=64, 128, 256.  

We conducted both sequential and distributed FRTS 
experiments. In sequential simulation, the execution 
environment was a Sun Ultra 5 with 1 CPU and 
640Mbyte running Solaris 8. In distributed simulation, 
the environment was a set of 5 Sun Ultra 5 with 1 CPU 
and128Mbyte running Solaris 8, under conditions of 
equal load. Auditing and prediction intervals are equal to 
5.0sec/15.0sec and 10.0sec/30.0sec, respectively, so that 
predictions had to be reached for 3 auditing intervals 
ahead (p=3). Experiments were conducted according to 
the following algorithm: 

 
1. Execute 100 repetitions of the 

experiment 

1.1 

-Sequential: Execute no replications 
and calculate statistics 
-Distributed: Execute at least no 
replications, equally distributed among 
processors, and calculate statistics 

1.2 Calculate n so that condition (3) is 
fulfilled with probability a 

1.3 

-Sequential: Execute the remaining n-no 
concurrent replications and calculate 
statistics 
-Distributed: Execute at least n-no 
equally distributed replications and 
calculate statistics 

1.4 
Determine if the experiment is 
successful (i.e. if the time required 
to execute n replications is less than 
the auditing interval) 

1.5 
Calculate the precision increase (pri) 
in results after n replications 
compared to the corresponding precision 
after no replications (pri) 

2. 
Calculate the percentage of successful 
experiments (srate) and the average 
precision increase  

 

After each completion of no and n-no replications, we 
build a 90% confidence interval for avgD. We use the 
average value of the confidence-interval half-length 

(δ(n,a)=
n
(n)2S

2
a1,1n −−

t ) divided by the point estimate 

(n)avgD  as a measure of the precision of the confidence 
interval [8]. The overall algorithm was executed 3 
consecutive times, to provide a better estimate of the 
percentage of successes and compare it against 
probability a. Results for sequential and distributed 
simulation successful experiments, for various 
combinations of interarrival times and service times, are 
given in table 1 for NQM1 and in table 2 for NQM2. In 
most cases, the results obtained are better than expected 
(α), indicating that n replications were accomplished as 
required. The increased success ratio can be due to the 
low variance in the replication time duration.  

Executing n replications within the given time frame, 
the average increase in the precision of simulation results 
is depicted in table 3. The precision obtained after no and 
n replications is equal to δ(no,a)/ )(navgD o  and 

δ(n,a)/ (n)avgD , respectively. Precision is increased when 

pri<1, where pri=(δ(n,a)/ (n)avgD )/(δ(no,a)/ )(navgD o ). 
Precision increase results with distributed simulation are 
presented in table 3 for NQM1. As avg(pri) ranges from 
0.616 to 0.846, an increase of 0.154 – 0.384 is obtained, 
contributing significantly to the reliability of predictions.  

 
5. Conclusions 

We argued that reaching conclusions in FRTS for a 
specific number of intervals ahead should be considered 
as a terminating simulation, which imposed that multiple 
replications have to be made. Timing issues for 
performing a large number of replications within the 
given time frame were examined. The method introduced 
facilitates designing and carrying out experiments 
consisting of n independent replications, where n is 
dynamically determined at runtime, as the duration of 
replications cannot be efficiently calculated at the design 
phase. Adjusting the proposed method for achieving a 
specified precision for simulation results is an open issue 
for further research.  
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s interarrival and service times (b, α) 

64 0.01, 
0.608 

0.01, 
0.624 

0.01, 
0.640 

0.02, 
1.216 

0.02, 
1.248 

0.02, 
1.280 

0.03, 
1.824 

0.03, 
1.872 

0.03, 
1.92 

seq. 0.973 0.956 0.99 0.95 0.953 0.986 0.99 0.966 0.993 
distr. 0.98 0.966 0.976 0.966 0.97 0.956 0.976 0.953 0.96 

128 0.01, 
1.216 

0.01, 
1.248 

0.01, 
1.280 

0.02, 
2.432 

0.02, 
2.496 

0.02, 
2.56 

0.03, 
3.648 

0.03, 
3.744 

0.03, 
3.84 

seq. 0.986 0.983 0.986 0.996 0.973 0.986 0.99 0.983 0.97 
distr. 0.966 0.99 0.98 0.976 0.966 0.97 0.98 0.966 0.973 

256 0.01, 
2.432 

0.01, 
2.432 

0.01, 
2.496 

0.02, 
4.864 

0.02, 
4.992 

0.02, 
5.12 

0.03, 
7.296 

0.03, 
3.488 

0.03, 
7.68 

seq. 0.98 0.99 0.956 0.98 0.976 0.993 0.966 0.95 0.973 
distr. 0.967 0.98 0.96 0.986 0.95 0.99 0.953 0.96 0.966 

Table 1: avg(srate) in sequential and distributed simulation (NQM1) 
 

s interarrival and service times (b, α) 

64 0.01, 
0.512 

0.01, 
0.576 

0.01, 
0.640 

0.02, 
1.024 

0.02, 
1.152 

0.02, 
1.28 

0.03, 
1.536 

0.03, 
1.728 

0.03, 
1.92 

seq. 0.99 0.996 0.97 0.986 0.97 0.966 0.98 0.993 0.986 
distr. 0.973 0.973 0.99 0.963 0.963 0.976 0.963 0.976 0.97 

128 0.01, 
1.024 

0.01, 
1.152 

0.01, 
1.28 

0.02, 
2.048 

0.02, 
2.304 

0.02, 
2.56 

0.03, 
3.072 

0.03, 
3.456 

0.03, 
3.84 

seq. 0.99 0.976 0.993 0.98 0.956 0.97 0.963 0.976 0.963 
distr. 0.966 0.96 0.99 0.973 0.96 0.99 0.99 0.976 0.98 

256 0.01, 
2.948 

0.01, 
2.304 

0.01, 
2.56 

0.02, 
4.096 

0.02, 
4.608 

0.02, 
5.12 

0.03, 
6.144 

0.03, 
6.192 

0.03, 
7.68 

seq. 0.99 0.986 0.976 0.993 0.99 0.98 0.963 0.966 0.956 
distr. 0.973 0.953 0.99 0.963 0.956 0.97 0.953 0.97 0.95 

Table 2: avg(srate) in sequential and distributed simulation (NQM2) 
 

s interarrival and service times (b, α) 

64 0.01, 
0.608 

0.01, 
0.624 

0.01, 
0.640 

0.02, 
1.216 

0.02, 
1.248 

0.02, 
1.280 

0.03, 
1.824 

0.03, 
1.872 

0.03, 
1.92 

avg(pri) 0.713 0.720 0.706 0.663 0.658 0.671 0.616 0.616 0.622 

128 0.01, 
1.216 

0.01, 
1.248 

0.01, 
1.280 

0.02, 
2.432 

0.02, 
2.496 

0.02, 
2.56 

0.03, 
3.648 

0.03, 
3.744 

0.03, 
3.84 

avg(pri) 0.789 0.768 0.773 0.684 0.692 0.702 0.644 0.647 0.656 

256 0.01, 
2.432 

0.01, 
2.432 

0.01, 
2.496 

0.02, 
4.864 

0.02, 
4.992 

0.02, 
5.12 

0.03, 
7.296 

0.03, 
3.488 

0.03, 
7.68 

avg(pri) 0.820 0.846 0.843 0.697 0.702 0.741 0.648 0.673 0.674 
Table 3: Average precision increase after the execution of n-no replications (NQM1) 
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