
Experiment Scheduling in Faster-than-Real-Time Simulation

Dimosthenis Anagnostopoulos
Dept. of Informatics
University of Athens

Panepistimiopolis, Athens, 15771, Greece
email: dimosthe@di.uoa.gr

Abstract

Faster-than-real-time simulation (FRTS) can be used for
the performance evaluation of systems behavior in real
time, providing significant capabilities for studying
systems with a time-varying behavior. FRTS enables
model validation through comparing simulation results
with the corresponding system observations. However,
experimentation proves to be rather demanding, as both
delivering output results and ensuring their reliability
must be accomplished within a predetermined time frame.
Output analysis of system observations and model results
and relevant timing issues are discussed. A method is
introduced that determines whether it is possible to
execute the “optimal” faster-than-real-time experiment,
in which case multiple replications are scheduled for
execution, or a compromise has to be made between the
ability to predict for the long future and the degree of
reliability achieved for predictions. FRTS experimental
results are also presented to support the effectiveness of
the proposed method.

1. Introduction

A real-time simulator is a real-time system where some
portions of the environment, or even portions of the real-
time system itself, are realized by a simulation model [1].
Evaluating the performance of the system under study in
real time is certainly not a trivial task, depending on
various issues, such as the system speed (i.e. how often
state changes occur, compared to world time) and nature,
which determines crucial issues, such as the allowed
degree of human interaction with the system. When
attempting to reach conclusions for the system behavior
in the near future, faster-than-real-time simulation
(FRTS) is widely used. In this type of simulation,
advancement of simulation time occurs faster than real
world time.

Real time systems often have hard requirements for
interacting with the human operator or other agents [2].
As making models run faster is the modeler's
responsibility, a significant disadvantage is that timing
problems are recognized during or even after testing.
Researchers have thus pointed out that timing
requirements should be addressed at the design phase [3].
Addressing timing problems at this phase, though, does
not consider the variability in the time required to execute
an experiment, which is caused by real conditions, such
as arrival-process distribution parameters, which may be
non-stationary. It does not also consider the need for
achieving a specific degree of confidence for simulation
results, which is calculated during the execution of the
experiment. We thus argue that timing issues should also
be addressed at the implementation (or execution) phase.
The complexity of interacting in real time with the
system, in order to conclude on the validity of the model
and predictions, should also be addressed both at the
methodological level and for domain-oriented
applications, e.g. transportation, process-control systems
and communication networks [4].

Timing requirements such as the following are
considered in FRTS: the model must run faster than the
system, system data must be obtained and processed in
real time so that the current system state is always known,
the model has to be adapted to the current system state
without terminating the FRTS experiment, since the
system under study may be a time-varying one, and
dynamic (i.e. in real time) model modification should be
enabled. In addition, model validity must always be
ensured and, when simulation results are utilized to
ensure validity, they must have the essential statistical
properties (e.g. the appropriate sample size and statistical
processing). Analysis of simulation results and system
data must always be performed within the given time
frames. Timing requirements have been addressed by

mailto:dimosthe@di.uoa.gr

methodological approaches, such as [5], which is
employed in this paper. This conceptual FRTS
methodology provides extensions to traditional
simulation, focusing on real-time interaction and ensuring
the validity of simulation results. It consists of the
following phases: modeling, experimentation and
remodeling. The modified FRTS executive is presented in
figure 1. The system and the model are under monitoring
during experimentation. Data depicting their consequent
states are obtained within predetermined time intervals of
equal length, called auditing intervals. In case the model
state deviates from the corresponding system state,
remodeling is invoked. This may occur due to system
modifications, which can involve its input data, operation
parameters and structure [5]. In these cases, remodeling
adapts the model to the current system state. This is
accomplished without terminating the real time
experiment, since no recompilation is performed. When
model modifications are completed, experimentation
resumes. Remodeling can also be invoked when
deviations (expressed through appropriate performance
measures) are indicated between the system and the
model due to the stochastic nature of simulation, even
when the system parameters/ components have not been
modified. In case simulation results (predictions for the
near future) are considered to be valid, an additional
phase, called plan scheduling, is invoked to take
advantage of them [5]. However, as depicted in figure 1,
plan scheduling activities are not considered as a part of
the FRTS environment.

Experimentation encompasses monitoring, which is
the activity where system and model states are obtained
and stored while the model is executed, and auditing.
Auditing examines if simulation results are reliable, based
on system observations, as well as whether the system has
been modified during the last observation. The dynamic
system behavior may result in critical modifications in the
system input data, operation parameters and structure.
Structure variability, in particular, has been studied either
at the methodological level [6], [7] or in domain-oriented
research approaches, such as for computer networks [4].
To conclude about such modifications, specific attributes
of both systems are put under monitoring. The
corresponding variables are referred as monitoring
variables. Monitoring variables should be considered at a
conceptual level, not according to the conventional,
single-valued definition of program variables, as later
discussed. Auditing examines the monitoring variables
corresponding to the same real time points (i.e. the
current system state and simulation predictions for this
time point) and concludes for the evolution of the system
and the model [5].

Model execution
 -System monitoring

 -Model monitoring

Model validation

Evaluate simulation
predictions

Propose appropriate plan

Discard simulation
results

Remove pending events
Reset simulation clock to

world time

Remodeling
required

Plan
scheduling
conditions
satisfied

Termination
conditions
satisfied

Adapt model to current
system state

YES

NO

NO YES

YES

NO

Model initialisation

Gather simulation data,
system observations

Start FRTS
experiment

Stop FRTS
experiment

Figure 1: FRTS executive

An example is presented in figure 2, where the
evolution of the system and the model is depicted at the
two horizontal axes. Real time points are noted as ti. The
states of the system and the model at point ti are noted as
Ri and Si. When at tx the model predicts the system state
at tn (simulation time is equal to tn) we use the notation
Sim(tx)= tn. States Sx and Rn are thus compared during
auditing at time point tn.

In this paper, we address timing issues of FRTS, that
is, we state the problems encountered and propose a
method for executing experiments conforming to the real-
time requirements. The proposed experiment scheduling
method is independent of the execution environment, as it

applies to both sequential and parallel execution.
However, in the latter case, processing units must be of
the same hardware and have the same load, as latter
discussed. The term FRTS (or FRTS experiment) denotes
the entire simulation process, involving model execution,
monitoring, auditing and remodeling activities, performed
in consecutive auditing intervals. FRTS experiments are
terminated when termination conditions are fulfilled (e.g.
if FRTS cannot be achieved or world time reaches a
predetermined value). A single experiment is executed
within each auditing interval and consists of one or
multiple replications. We consider the case of terminating
simulations (there is no relationship with the
abovementioned termination conditions), which is more
common yet more difficult to carry out, as discussed in
section 2. Thus, each single experiment is a terminating
simulation, imposing that multiple replications must be
completed within the given time frame to reach
predictions. A discussion concerning output analysis
issues encountered in FRTS resides in section 2. Timing
issues as well as a method for scheduling experiments and
dealing with them are presented in section 3. Section 4
includes experimental results and conclusions reside in
section 5.

t0 tn-1 tn

Sn

RnRn-1

Sn-1

ty

Rn+1

Sj

tx

Sx

Ry

tn+1

auditing interval

auditing

Model States

System States

Real Time

Real Time

prediction

Figure 2: Experimentation in FRTS

2. Output analysis

In this section, we discuss whether FRTS should be
considered as a terminating or non-terminating simulation
and how simulation data and system observations are
compared (that is, when system and model data are
obtained and how this comparison should be performed).
In general, the options available in designing and
analyzing simulation experiments depend on the type of
simulation at hand, which may be either terminating or
non-terminating, depending on whether there is an
obvious way to determine run length. A terminating
simulation is one for which there is a “natural” event that
specifies the length of each run (replication), whereas a
non-terminating simulation is one for which there is no

such event [8]. A performance measure for such a
simulation is a steady state parameter if it is a
characteristic of the steady state distribution of some
output process. The authors argue that experiments in
FRTS should be widely considered as terminating
simulations due to the following:
1. Stochastic processes for more real systems do not

have steady-state distributions, since the
characteristics of the system change over time [8].

2. Observations from a particular replication are clearly
not IID.

3. Experiment termination, which occurs when
simulation predictions are produced for specific
future time points, can be considered as the
terminating event.

Considering FRTS as a terminating simulation
imposes that we make n independent replications, each
one terminated by a “natural” event that is scheduled for
execution when simulation time reaches the predicted
time points. Beginning with the same initial conditions,
replications produce n observation sequences. Suppose
that MV

1
, MV

2
, … MV

k
 are the monitoring variables used

for the purposes of a FRTS experiment. Each variable
MV

i
 is practically distinguished into two separate values

MV
i
.r and MV

i
.s for the system and the model,

respectively. MV
i
.r is calculated as a function of either a

single-valued variate (performance measure or system
parameter) or multiple observations Ri1, Ri2, … from the
system, in which case MV

i
.r = fi (Ri1, Ri2, …). MV

i
.s can

also be calculated as a function of either a single-valued
variate or an output stochastic process. MV

i
.s can thus be

a function of n stochastic processes:
Si11, Si12, Si13, Si14, …, Si1k1
Si21, Si22, Si23, Si24, …, Si2k2
Sin1, Sin2, Sin3, Sin4, …, Si1kn

In FRTS, the number of observations per replication is
not the same, since simulation ends at a specific
simulation time, no matter the current status of the system
entities (e.g. how many customers have been serviced in a
GI/G/s system). Replication results are thus extracted
from k1, k2, …, kn observations. Considering that the
output process of each replication j produces a single
statistical sample Sij, then:

Sij = g(Sij1, Sij2, …, Sijkj)

MV
i
 .s = sum (Si1, Si2, …, Sin)/n

The issue of comparing system observations and
simulation results has been thoroughly examined in the
literature and various methods have been proposed
depending on the nature of the problem. Law and Kelton

provide an excellent review [8]. A confidence interval
approach based on independent data proves to be a well-
suited solution. In our case, specific conditions that must
be taken under consideration when selecting an
appropriate statistical method are that there are n
independent sets of data from the model but only one
from the system and that data from the system are not
correlated with data from the model.

We focus on determining model and system data to be
compared. Suppose there are no previous predictions, as
in the case when remodeling has just been performed, and
simulation execution starts at point tn. Since comparisons
between model and system data are performed during
auditing, it is reasonable to determine the predicted time
points using the auditing interval (AudInt) as a time unit.
When the model runs faster than the system, it reaches
conclusions for p intervals ahead within the auditing
interval [tn, tn+1] (figure 3). In this example, Sim(tx) =
tn, Sim(ty) = tn+1, Sim(tz) = tn+2.

t0 tn-1
tn

Sn

RnRn-1

Sn-1

Rn+1

Sn+1

tx

Sx

tn+1

Sy

ty

Rn+2

Sn+2

tn+2tz

Sz

Figure 3: Reaching conclusions for p intervals ahead

To perform comparisons, model results are obtained at
the corresponding real time points. Considering that n
independent replications have to be made, model output
MV

i
.s has to be calculated at tx, ty and tz. Note that tx, ty

and tz are the time points where all replications must be
completed for the corresponding predicted intervals, i.e.
at tx, the “slowest” replication produces its output for Rn.
There have to be p sets of output results MV

1
.s, MV

2
.s, …,

MV
k
.s produced within a single auditing interval, as

presented in figure 4. The discussion for calculating the
values of MV

i
.s thus concerns each of the future states

predicted within the intervals [tn, tx], [tx, ty], [ty, tz], etc.
In fact, typically, we could also refer to p simulations,
where n replications are made for each of them. In the
next section, we discuss determining n for each specific
replication. Except from the first interval (i.e. [tn, tx]),
where the initial model state has to be identical to the

corresponding system state, in all other cases, the model
state at the end point of the previous interval serves as the
initial state for the next one.

 MV

1
.s MV

1
.s MV

1
.s … MV

1
.s

 MV
2
.s MV

2
.s MV

2
.s … MV

2
.s

…
 MV

k
.s MV

k
.s MV

k
.s … MV

k
.s

 tx ty tz …

Figure 4: Output results produced for each
predicted interval

We have previously discussed the terminating event of

each of the n replications. In fact, there have to be p
terminating events for each “complete” (i.e. covering all
predicted intervals) replication. The terminating event is
the one examining when at time point tj simulation time
reaches the end point of the predicted interval, that is:

Sim(tj) = tn + i*AudInt,i∈ N*,1≤ i ≤ p
The above conclusions are reached on the basis that a

fixed number or replications is required to reach
predictions for each of the future system states, which is
rather a common practice. In this way, reliability is
ensured with the same amount of experimental results for
each of the predicted states. The conclusions reached
concerning the execution of an experiment within a
specific auditing interval are used in the following to
determine an effective way for scheduling and executing
n replications, with respect to the timing requirements
imposed.

3. Timing issues and proposed method

Suppose the current time is tn and we want to reach
predictions for tk within the current auditing interval.
Then at some future point tj, condition Sim(tj) = tk must
be fulfilled. This introduces the issue of determining the
prediction interval length. It is required that tj < tk , but
the question is how much tk – tj should be. An obvious
answer is that “predictability” must be dictated by the
requirements imposed to simulation (e.g. in case of a
control processes) and by the constraints imposed by the
nature of the system (e.g. how fast the system evolves).
On the one hand, it is evident that having (reliable)
predictions for long intervals ahead would be desirable.
However, the degree of reliability cannot be ensured and
usually tends to decrease for very long predictions,
suffering from the fact that the characteristics of real
systems tend to change over time. On the other hand,
timing restrictions for experimentation are increased

when predicting long ahead, especially in cases where the
system evolves nearly as fast as simulation.

To discuss in depth timing issues, a specification of the
overall control scheme of FRTS is provided in figure 5, in
terms of a real-time data flow diagram (DFD) focusing on
the control process and the time-consuming activities [9].
Suppose that simulation reaches conclusions for at least p
auditing intervals ahead of real time. If current time is tn
and Sim(tn) = tn (i.e. simulation is re-initiated) then, at
some future point tj, the following conditions must be
fulfilled:

Sim(tj) = tn + p*AudInt
 tj < tn + AudInt

To achieve this, simulation activities that definitely
must be accomplished before tj, as depicted in figure 5,
are: model initialization, system monitoring and model
monitoring. The process that accepts experiment
parameters from the user, as discussed in paragraph 2.1,
is accomplished prior to the initiation of the FRTS
experiment. System monitoring is executed continuously
and concurrently with model execution during the
auditing interval. Thus, timing requirements involve
model initialization and model monitoring (i.e. model

execution and storing output results), which consume
time equal to TInit and TExec, respectively.

Auditing, on the other hand, does not add any time
overhead to the experiment conducted within the current
interval, since it is executed only when the auditing
interval has elapsed. There are, however, requirements for
auditing duration, as model execution is temporarily
paused, so that conclusions for model reliability are
reached with minimum time overhead before resuming
experimentation. The same stands for remodeling, as it is
executed after auditing and only when necessary.
Evidently, model execution is also paused during
remodeling. Remodeling discards all previous simulation
results and the FRTS experiment is re-initiated from the
current real time point. We examine the detailed
execution of monitoring, auditing and remodeling
activities during sequential intervals using figure 6.

Since Sim(tx) = tn and Sim(ty) = tn+1, auditing
compares Sx with Rn at tn. Assuming that auditing
indicates that the corresponding model and system states,
expressed through monitoring variables MV.s and MV.r,
do not coincide, predictions (i.e. Sy) are discarded and
remodeling is activated to restore consistency. The time
required is denoted as TAudit and TRemodel. The
following are noted:

Experiment
Control

1

Remodeling
7

Model

System
Monitoring

5

Model
Monitoring

4E/D

Monitoring model completed

Model DataSystemSystem Data

Remodeling completed

Model Library

Model

E/D
Monitoring system completed

State monitoring completed

 Model
Initialisation

3

E/D
Initialisation completed

Auditing
6

T

Continue

Remodeling

Model Data

User

Change parameters

Get User
Parameters

2

E/D

Done

User Parameters

T
Start

Start/Pause/Stop

User Parameters

Figure 5: DFD specification of FRTS control

1. System monitoring process is re-initiated after the
completing of the previous auditing interval without
waiting for the completion of auditing and
monitoring activities. In this way, we avoid ignoring
significant system changes during the execution of
these activities and we ensure that auditing is always
performed at the expected time point (i.e. tn +
i*AudInt).

2. Model monitoring/ execution is actually performed
during a shorter interval than AudInt (i.e. reduced by
TAudit and TRemodel). The duration of both auditing
and remodeling activities should thus be considered
when determining the available time frame for model
execution. However, TAudit and TRemodel affect the
next interval – not the one producing the data
auditing and remodeling examine.

t0
tn-1

tn

Sn

RnRn-1

Sn-1

Rn+1

Sn+1

tx

Sx

tn+1

Sy

ty

Rn+2

Sn+2

tn+2

model monitoring
and execution

system
monitoring

system
monitoring

auditing
remodeling

Figure 6: Execution of monitoring, auditing and
remodeling within the auditing interval

Formulating the timing requirements, we consider the

worst-case scenario, which is described as follows:
1. Both auditing and remodeling have been performed,

consuming time equal to TAudit and TRemodel.
Simulation time must thus be re-initiated from the
starting point of the current auditing interval.

2. Simulation must reach predictions for p auditing
intervals ahead of this time point.

The essential condition for accomplishing FRTS within
each auditing interval is the following.

TAudit + TRemodel + TInit + TExec ≤ AudInt (1)
TInit is practically equal to 0. TExec is the time required
to reach predictions for the p intervals ahead. As TAudit
and TRemodel concern the previous auditing interval,
they are already known when a new experiment is

initiated within the current interval. We need to perform n
independent replications. Suppose that Ti is the time
required to execute replication i. We define
bi = Ti / PredictedInterval, which expresses how many
times is the system slower than simulation in each
replication. Then,

pAudInt
RemodelTAuditTAudIntn

1i ib

AudInt
n

1i ibpAudIntRemodelTAuditT

n

1i ibpAudInt(pAudInt)
n

1i ib
n

1i iTExecT

−−
≤∑

=

≤∑
=

++

∑
=

=∑
=

=∑
=

=

Condition (2) is the one determining if it is p
perform FRTS on a software and hardware
offering the capability to run each replication
times faster than the system (E(bi) is the expec
of bi). Based on this, the following method is
for designing the execution of multiple replicatio
a single auditing interval. This method
theoretical and experimental results to examine
is possible to execute n replications, each one
results for p auditing intervals ahead of the star
within the given time frame. A number
replications (no) is used to estimate µ=E(bi).
1. Make no replications of the simulation a

statistics (note that no should be large e
provide a good estimation for µ).

2. Estimate µ and σ2=Var(bi) as follows: = µ

∑
=

−
−

=
o

2
n

1i
)](E

o

2
ibib[

1n
1 s .

3. Suppose that . Assume

distribution function for bi. We know that
bn are IID, thus s

∑
=

=
n

1i
n ibB

2 is an estimate of σ2.

central limit theorem, nnµ)/σn −(B ∼ Ν
want the probability that n replication
executed to be equal to a (e.g. 0.9

P[Bn≤ pAudInt
TAuditT −AudInt Remodel−

]≥

Suppose that λ=
pAudInt

RTAuditTAudInt −−

Then,P[Bn≤λ]=P[nnµ)/sn −(B ≤ n(λ −

= P[Z≤ nnµ)/s(λ −]≥ a . Suppose th
(2)
ossible to
 platform
 1 / E(bi)
ted value

 proposed
ns within
combines
whether it
producing
ting point,
of initial

nd gather
nough to

∑
=

on

1io ib
n
1

,

there is

b1, b2, …
Using the

(0,1). We
s can be
). Thus,

a.

emodel .

nµ)/s]

at k is a

value for which P[Z≤ k] = a. Thus, to perform n
replications within the time frame given with
probability a, the following condition must be
fulfilled:

nnµ)/s(λ − ≥ k (3)
4. If condition (3) can be fulfilled, execute the rest n-no

concurrent replications. When results from all
replication are produced for each interval, update
statistics (using also the results from the no
replications) and store results. If the time consumed
during simulation exceeds AudInt, immediately
terminate simulation.

5. If condition (3) cannot be fulfilled, a decision has to
be made concerning decreasing the number of
remaining replications (n-no) so that nnµ)/sλ −(≥
k or decreasing the number of predicted intervals.

6. Execute the remaining replications concurrently.
When results from all replications are produced for
each interval, update statistics (using also the results
from the no replications) and store results.
Meanwhile, if the time consumed exceeds AudInt,
immediately terminate simulation.

Using this method, we cannot be certain that results
from all replications will be produced within the given
time frame - in the general case, this would not be
possible due to the stochastic nature of simulation. In any
experiment that simulation exceeds the time frame, this
specific experiment has to be immediately terminated. To
ensure that results for the most immediate intervals are
produced with an acceptable degree of reliability, which
depends on the number of replications, concurrent
execution of all replications is suggested. In this way,
reliability of results for the most immediate intervals, for
which we are mostly concerned as they are soon to be
compared with system data, is not endangered. On the
other hand, if some replications were not to produce
results in the case of a sequential execution, this would
have an impact on reliability, and potentially cause
remodeling. This must be avoided, since all predictions
would then have to be discarded and remodeling time
would have to be consumed. After all, if predictions for
“remote” intervals were not obtained, they can always be
produced within the next auditing interval. The authors
argue that this principle should also be adopted when
considering whether to decrease the number of remaining
replications or the number of predicted intervals. Thus, to
fulfill nnµ)/s(λ − ≥ k, the value for p must be chosen
so that:

nµ)nAudInt(ks
RemodelTAuditTAudInt

p
+

−−
≤ (4)

Based on the above, the proposed scheme for executing n
independent replications is depicted in figure 7.

tn

Rn
Rn+1

Sn+1

tn+1

auditing remodeling

 no

replications

 n-no

replications 1 2 3

Figure 7: Proposed scheme for executing n

replications

4. Experimental results
The proposed experiment scheduling method is

independent of the execution environment, as it applies to
both sequential and parallel execution. Parallel simulation
is most suitable for executing the remaining n-no
replications, to ensure that results for the most immediate
intervals are produced with an acceptable degree of
reliability (step 6). However, processing units must be of
the same hardware and have the same load, in order to
run each replication 1 / E(bi) times faster than the
system. Furthermore, when executing independent,
sequential simulations on different processors (also
known as replicated trials approach), a drawback is that
each processor must contain sufficient memory to hold
the entire simulation [10]. In the case of large-scale
systems, TAudit and TRemodel could be considerably
increased, but this should not be a problem as they refer
to the previous auditing interval and are thus known when
a new experiment is initiated in the current interval. A
potential problem could emerge due to unreliable
communications, especially in a LAN or WAN
computing environment, preventing the delivery of some
replication results. Reaching results on the basis of the
rest no–1 or n-1 replications (provided that these are
available) could be an acceptable solution to this problem.

Applying the proposed method also requires that
monitoring capabilities be provided over Ti, that is, the
time required to execute replication i. Calculating Ti is
rather trivial and, as numerous output variates are

calculated within each replication, Ti can be considered as
an additional output variate, which does not impose any
limitation to the proposed method. We simulated the
following network queuing models, considering a
probability of 95% for being able to execute n
replications within the auditing interval (a= 0.95). The
average delay in the queue (AvgDelay) is used as an
output variate.

QNM1. a M/Gamma/s queuing network (using
Kendall’s notation in classical queuing theory), that is,
with Exponential(b) interarrival times, Gamma(α,β)
service times and s servers, for s=64, 128, 256, with
various values for b and α, while β = 2.0

QNM2. a queuing network with s stations (multiple-
server/multiple-queue system) where jobs are randomly
routed to stations, with Exponential(b) interarrival times,
Gamma(α,β) service times, for s=64, 128, 256.

We conducted both sequential and distributed FRTS
experiments. In sequential simulation, the execution
environment was a Sun Ultra 5 with 1 CPU and
640Mbyte running Solaris 8. In distributed simulation,
the environment was a set of 5 Sun Ultra 5 with 1 CPU
and128Mbyte running Solaris 8, under conditions of
equal load. Auditing and prediction intervals are equal to
5.0sec/15.0sec and 10.0sec/30.0sec, respectively, so that
predictions had to be reached for 3 auditing intervals
ahead (p=3). Experiments were conducted according to
the following algorithm:

1. Execute 100 repetitions of the

experiment

1.1

-Sequential: Execute no replications
and calculate statistics
-Distributed: Execute at least no
replications, equally distributed among
processors, and calculate statistics

1.2 Calculate n so that condition (3) is
fulfilled with probability a

1.3

-Sequential: Execute the remaining n-no
concurrent replications and calculate
statistics
-Distributed: Execute at least n-no
equally distributed replications and
calculate statistics

1.4
Determine if the experiment is
successful (i.e. if the time required
to execute n replications is less than
the auditing interval)

1.5
Calculate the precision increase (pri)
in results after n replications
compared to the corresponding precision
after no replications (pri)

2.
Calculate the percentage of successful
experiments (srate) and the average
precision increase

After each completion of no and n-no replications, we
build a 90% confidence interval for avgD. We use the
average value of the confidence-interval half-length

(δ(n,a)=
n
(n)2S

2
a1,1n −−

t) divided by the point estimate

(n)avgD as a measure of the precision of the confidence
interval [8]. The overall algorithm was executed 3
consecutive times, to provide a better estimate of the
percentage of successes and compare it against
probability a. Results for sequential and distributed
simulation successful experiments, for various
combinations of interarrival times and service times, are
given in table 1 for NQM1 and in table 2 for NQM2. In
most cases, the results obtained are better than expected
(α), indicating that n replications were accomplished as
required. The increased success ratio can be due to the
low variance in the replication time duration.

Executing n replications within the given time frame,
the average increase in the precision of simulation results
is depicted in table 3. The precision obtained after no and
n replications is equal to δ(no,a)/)(navgD o and

δ(n,a)/ (n)avgD , respectively. Precision is increased when

pri<1, where pri=(δ(n,a)/ (n)avgD)/(δ(no,a)/)(navgD o).
Precision increase results with distributed simulation are
presented in table 3 for NQM1. As avg(pri) ranges from
0.616 to 0.846, an increase of 0.154 – 0.384 is obtained,
contributing significantly to the reliability of predictions.

5. Conclusions

We argued that reaching conclusions in FRTS for a
specific number of intervals ahead should be considered
as a terminating simulation, which imposed that multiple
replications have to be made. Timing issues for
performing a large number of replications within the
given time frame were examined. The method introduced
facilitates designing and carrying out experiments
consisting of n independent replications, where n is
dynamically determined at runtime, as the duration of
replications cannot be efficiently calculated at the design
phase. Adjusting the proposed method for achieving a
specified precision for simulation results is an open issue
for further research.

Acknowledgements:
The author thanks the anonymous referees for their
comments on this paper.

s interarrival and service times (b, α)

64 0.01,
0.608

0.01,
0.624

0.01,
0.640

0.02,
1.216

0.02,
1.248

0.02,
1.280

0.03,
1.824

0.03,
1.872

0.03,
1.92

seq. 0.973 0.956 0.99 0.95 0.953 0.986 0.99 0.966 0.993
distr. 0.98 0.966 0.976 0.966 0.97 0.956 0.976 0.953 0.96

128 0.01,
1.216

0.01,
1.248

0.01,
1.280

0.02,
2.432

0.02,
2.496

0.02,
2.56

0.03,
3.648

0.03,
3.744

0.03,
3.84

seq. 0.986 0.983 0.986 0.996 0.973 0.986 0.99 0.983 0.97
distr. 0.966 0.99 0.98 0.976 0.966 0.97 0.98 0.966 0.973

256 0.01,
2.432

0.01,
2.432

0.01,
2.496

0.02,
4.864

0.02,
4.992

0.02,
5.12

0.03,
7.296

0.03,
3.488

0.03,
7.68

seq. 0.98 0.99 0.956 0.98 0.976 0.993 0.966 0.95 0.973
distr. 0.967 0.98 0.96 0.986 0.95 0.99 0.953 0.96 0.966

Table 1: avg(srate) in sequential and distributed simulation (NQM1)

s interarrival and service times (b, α)

64 0.01,
0.512

0.01,
0.576

0.01,
0.640

0.02,
1.024

0.02,
1.152

0.02,
1.28

0.03,
1.536

0.03,
1.728

0.03,
1.92

seq. 0.99 0.996 0.97 0.986 0.97 0.966 0.98 0.993 0.986
distr. 0.973 0.973 0.99 0.963 0.963 0.976 0.963 0.976 0.97

128 0.01,
1.024

0.01,
1.152

0.01,
1.28

0.02,
2.048

0.02,
2.304

0.02,
2.56

0.03,
3.072

0.03,
3.456

0.03,
3.84

seq. 0.99 0.976 0.993 0.98 0.956 0.97 0.963 0.976 0.963
distr. 0.966 0.96 0.99 0.973 0.96 0.99 0.99 0.976 0.98

256 0.01,
2.948

0.01,
2.304

0.01,
2.56

0.02,
4.096

0.02,
4.608

0.02,
5.12

0.03,
6.144

0.03,
6.192

0.03,
7.68

seq. 0.99 0.986 0.976 0.993 0.99 0.98 0.963 0.966 0.956
distr. 0.973 0.953 0.99 0.963 0.956 0.97 0.953 0.97 0.95

Table 2: avg(srate) in sequential and distributed simulation (NQM2)

s interarrival and service times (b, α)

64 0.01,
0.608

0.01,
0.624

0.01,
0.640

0.02,
1.216

0.02,
1.248

0.02,
1.280

0.03,
1.824

0.03,
1.872

0.03,
1.92

avg(pri) 0.713 0.720 0.706 0.663 0.658 0.671 0.616 0.616 0.622

128 0.01,
1.216

0.01,
1.248

0.01,
1.280

0.02,
2.432

0.02,
2.496

0.02,
2.56

0.03,
3.648

0.03,
3.744

0.03,
3.84

avg(pri) 0.789 0.768 0.773 0.684 0.692 0.702 0.644 0.647 0.656

256 0.01,
2.432

0.01,
2.432

0.01,
2.496

0.02,
4.864

0.02,
4.992

0.02,
5.12

0.03,
7.296

0.03,
3.488

0.03,
7.68

avg(pri) 0.820 0.846 0.843 0.697 0.702 0.741 0.648 0.673 0.674
Table 3: Average precision increase after the execution of n-no replications (NQM1)

References
1. Ghosh K., K. Panesar, R. M. Fujimoto, and K.

Schwan. "PORTS: A Parallel, Optimistic, Real-Time
Simulator,'' in Proceedings of 1994 Workshop on Parallel
and Distributed Simulation, IEEE Computer Press, 1994,
pp.24-31

2. Cubert R., P. Fishwick, “OOPM: An Object-Oriented
Multimodeling and Simulation Application Framework,
Simulation, vol. 70, no. 6, 1998, pp. 379-395

3. Burns A., A. Wellings, "Hrt-Hood: A structured design
method for hard real time systems", Real Time Systems,
vol. 6, 1994, pp. 73-114

4. Anagnostopoulos D., M. Nikolaidou, "An Object-Oriented
Modeling Approach for Dynamic Computer Network
Simulation", International Journal of Modeling and
Simulation, vol. 21, no. 4, 2001

5. Anagnostopoulos D., M. Nikolaidou, P. Georgiadis, "A
Conceptual Methodology for Conducting Faster-Than-
Real-Time Experiments", SCS Transactions on Computer
Simulation, vol. 16, no. 2, 1999, pp. 70-77

6. Barros F. J., “Modeling Formalisms for Dynamic Structure
Systems”, ACM Transactions on Modeling and Computer
Simulation - TOMACS, vol. 7, no. 4, 1997, pp. 501-515

7. Zeigler B. P., H. Praehofer, T. Kim, Theory of Modeling
and Simulation (second edition), Academic Press, 2000

8. Law A.M., W.D. Kelton, Simulation Modeling and
Analysis (third edition), McGraw-Hill, 2000

9. Goldsmith S., “A Practical Guide To Real-Time Systems
Development”, Prentice Hall, 1993

10. Fujimoto R., “Parallel Discrete-Event Simulation”,
Communications of the ACM, vol. 33, no. 10, 1990, pp.
30-52

	1. Introduction
	2. Output analysis
	3. Timing issues and proposed method
	4. Experimental results
	5. Conclusions

