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Although new AI planning algorithms and techniques are being developed and improved rapidly, there is
a lack of efficient and easy to use systems able to incorporate and utilize them. Furthermore, while visual
representation facilitates design, maintenance and comprehension of planning domains and problems,
very few systems incorporate it. This paper presents VLEPPO, an integrated system aiming at visually
modeling planning domains and problems through a convenient graphical interface, while maintaining
compatibility with the Planning Domain Definition Language (PDDL), with import and export features.
Solutions to planning problems can be obtained by invoking different planners employing the web ser-
vices technology. The demonstration of the system is performed through a case study involving web ser-
vice composition viewed as a planning problem.

� 2009 Elsevier Ltd. All rights reserved.
1. Introduction

Planning has been an active research area since the early days of
AI (Weld, 1999), and its applications have been extremely useful in
cases when agents act in dynamic environments. Several formal-
isms for the representation of planning domains and problems
have emerged over time, among which Planning Domain Definition
Language (PDDL) (Ghallab et al., 1998) has dominated and become
a standard. Over the same period of time, numerous algorithms,
methods and techniques have been proposed (Hendler, Tate, &
Drummond, 1990).

Most of the algorithms and techniques developed so far mainly
focus on improving the efficiency of planning systems in terms of
required time and resources. Although the results are in many
cases impressive, there are not many successful examples of plan-
ning systems adapting to industrial use. This can be partly attrib-
uted to technical reasons such as the tendency of existing
planning systems to be bound to a specific algorithm which might
be overwhelmed by the amount of data they have to deal with, as it
is becoming more and more immense. This brings on the require-
ment for systems that have the ability to incorporate multiple
state-of-the-art algorithms before they are rendered outdated with
respect to current problem demands. Therefore, there is a need not
only for more efficient and scalable algorithms, but also for sys-
tems that, instead of being limited to a single algorithm, are flexile
enough to adapt and employ new algorithms and techniques.
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Furthermore, another important issue is the lack of systems that
facilitate the development and deployment of planning domains
and problems. Modelling and encoding them in some definition
language such as PDDL, necessary as it is, can be tiresome and er-
ror-prone. It should not be assumed that the designer will always
be a planning expert, and even in such cases, visual interfaces can
save a lot of time and effort required, while reducing the number of
errors and prevent inconsistencies. Visual interfaces in planning
systems liberate the designers from the requirement to pay atten-
tion to syntax and facilitate focusing on the semantics and struc-
ture of the problem at hand.

This paper presents an attempt to approach the design and solv-
ing of planning problems while taking into account the aforemen-
tioned issues. The result of this research was the development of
VLEPPO (Visual Language for Enhanced Planning Problem Orches-
tration), which is an integrated system for visually modeling and
solving planning problems that aims at:

� offering a convenient and intuitive graphical interface which
simplifies modeling, facilitates maintenance and promotes
understanding of planning domains, even for non-expert
users;

� conforming to the current standards for domain and problem
representation, such as PDDL, thus facilitating communica-
tion with planning systems that comply with this standard;

� providing a high degree of flexibility in integration of differ-
ent planning algorithms on top of the local one by employing
the current web services technology.

The VLEPPO system provides interoperability with the PDDL lan-
guage, as it can import domains and problems from PDDL files
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for visualization, validation and maintenance purposes and at the
same time export the designed or modified domains and problems
to PDDL. Furthermore, it offers separate but interoperable editors
for planning domains and problems facilitating modular design
and definition of new problems corresponding to existing planning
domains. Moreover, as far as planners are concerned, the web ser-
vices technology enables the proposed system to communicate
with planners implemented or wrapped and deployed as web ser-
vices; therefore, the user is not limited to a single planning algo-
rithm, while the implementation language and platform of the
planning algorithms is not a restriction.

The rest of the paper is organized as follows: Section 2 describes
some formalisms and standards used for the representation of
planning domains and problems, while Section 3 gives an overview
of VLEPPO and its architecture. Sections 4–6 elaborate on the fea-
tures of the system, while a case study involving web service com-
position is described in Section 7. Related work in the area is
presented in Section 8, and finally, Section 9 concludes the paper
and poses future directions.
2. Representation of planning domains and problems

This section describes the most prominent formalisms and stan-
dards used for the representation of planning domains and prob-
lems, namely STRIPS and PDDL. The approach described in this
work evolves around these formalisms, and particularly around
PDDL, as clear correspondences exist between elements of the sys-
tem and PDDL elements. In addition, PDDL is used in the VLEPPO
system when importing and exporting domains and problems as
a means of interoperability with other planning systems.

2.1. The STRIPS formalism

The STRIPS (Stanford Research Institute Planning System) for-
malism comprises the base for the representation of planning do-
mains and problems in most classical planning systems (Fikes &
Nilsson, 1971). A planning problem in STRIPS is a tuple hI, A, Gi,
where I is the initial state, A is a set of available actions that can
be used to modify states, and G is a set of goals. States are repre-
sented as sets of predicates.

Each action Ai has three lists of facts containing:

(a) the preconditions of Ai (noted as prec(Ai));
(b) the facts that are added to the state (noted as add(Ai)) and
(c) the facts that are deleted from the state (noted as del(Ai)).

The following formulae hold for the states in the STRIPS notation:

� An action Ai is applicable to a state S if prec(Ai) # S.
� If Ai is applied to S, the successor state S0 is calculated as: S0 = S/

del(Ai) [ add(Ai).

The solution to such a problem is a sequence of actions, which if
applied to I leads to a state S0 such as S0 � G.

Usually, in the description of domains, action schemas (also
called operators) are used instead of actions. Action schemas con-
tain variables that can be instantiated using the available objects
and this makes the encoding of the domain easier.

2.2. The PDDL definition language

Planning Domain Definition Language (PDDL) was initially de-
signed for providing a standard means of encoding planning do-
mains and problems used as input test sets for planners that
took part in planning competitions such as AIPS (AIPS, 2000) and
IPC (IPC, 2004; IPC-5). However, it has since been enhanced, ex-
tended and become a standard in the planning community for
modeling planning domains. The importance of PDDL lies in the
fact that it is established as the most widely acceptable common
language for the exchange of information for planning domains
and problems between researchers, while the majority of the
state-of-the-art planners use it as input and output language
(Gerevini, Saetti, & Serina, 2005; Hsu, Wah, Huang, & Chen, 2006;
PDDL4J, 2008; SATPLAN, 2004).

PDDL (Ghallab et al., 1998) mainly focuses on expressing the
physical properties of the domain under consideration in each
planning problem. In order to facilitate the development of
PDDL-compliant planners which are not obliged to cover the entire
language, its features have been formally divided into subsets re-
ferred to as requirements; therefore, each domain definition de-
clares which requirements will be put into effect, and planners
can determine whether the domain can be handled. In the follow-
ing paragraphs, in order to provide an overview of the language,
the most commonly used definition elements are explained briefly.

When types are used, each object that appears in a problem is
declared to be of a certain type. Consequently, the arguments of
the predicates must also be of a certain type, which permits do-
main validation. A type can be thought of as a timeless unary pred-
icate, and, in cases typing is not used, unary predicates are in fact
used to compensate for the lack of types.

Variables have the same semantics as in any other definition
language, and are used in conjunction with built-in functions for
expression evaluation. In more recent versions of PDDL, fluents
seem to gain momentum instead of variables when there is a need
for values that can change over time, as a result of an action. Con-
stants represent objects that do not change values over time and
can be used in domain operators definitions or problems associ-
ated with a domain.

Relations between objects in the domain are represented by
predicates. A predicate may have an arbitrary number of argu-
ments, whose ordering is important in PDDL. Predicates are used
to describe the state of the world at a specific moment and as pre-
conditions and results of an action. Timeless predicates are predi-
cates that are considered to be true at all times, therefore they
are cannot be affected by actions.

Actions enable transitions between successive situations. An ac-
tion declaration mentions the parameters and variables involved,
the preconditions that must hold for the action to be applied and
the results of an action (effects). The effects, according to the
STRIPS formalism, include the predicates that will be added to
the world state and the predicates that will be removed from the
world state after the application of the action. Predicates that are
not mentioned among the action effects are assumed to stay un-
changed from this action.

Axioms, in contrast to actions, state relationships among propo-
sitions that hold within the same situation. The necessity of axioms
arises from the fact that the action definitions do not mention all
the changes in all predicates that might be affected by an action;
therefore, additional predicates are concluded by axioms after
the application of each action. Axioms were renamed to derived
predicates in later versions.

Safety constraints in PDDL are background goals which may be
broken during the planning process, but ultimately they must be
restored. Constraint violations present in the initial situation do
not require to be fulfilled by the planner.

After having defined a planning domain, problems can be de-
fined with respect to it. A problem definition in PDDL must state
an initial situation and a final situation, referred to as goal, by spec-
ifying the predicates that comprise them. The closed world
assumption holds; therefore, all predicates which are not explicitly
defined to be true in the initial state are assumed to be false. The
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solution given to a problem is a sequence of actions which can be
applied to the initial situation, eventually producing the situation
stated by the goal description.

PDDL 2.1 (Fox & Long, 2003) was developed by the necessity to
express temporal and numeric properties of planning domains. The
first of the extensions introduced were numeric expressions, which
introduced new elements to the language. Functions are now part
of domain definition, which associate a number of objects with
an arithmetic value. Moreover, conditions were introduced, which
are actually comparisons between pairs of numeric expressions. Fi-
nally, assignment operations are possible, with the use of built-in
assignment operators such as assign, increase and decrease. The ac-
tual value for each combination of objects is not stated in the do-
main definition but must be provided to the planner in the
problem definition.

Other extensions in this version include durative actions, which,
in contrast to instantaneous actions considered up to now, have
some duration. This duration must be declared at their definition,
while temporal annotations are introduced to their conditions
and effects.

PDDL 2.2 (Edelkamp & Hoffmann, 2004) introduced timed initial
literals, which are facts that become true or false at certain points
in time known to the planner beforehand, independently of the ac-
tions chosen to be carried out by the planner.

In PDDL 3.0 (Gerevini & Long, 2005) the language was enhanced
with constructs that increase its expressive power regarding the
plan quality specification. The constraints and goals are divided
into strong, which must be satisfied by the solution, and soft,
which may not be satisfied, but are desired. In addition, the notion
of plan trajectories is introduced, which allows the specification of
intermediate states that a solution has to reach, before it reaches
the final state.
3. Overview and architecture of the system

VLEPPO is an integrated system intended to facilitate modeling
and solving of planning problems. Among its key features is a con-
venient, intuitive and easy-to-use graphical interface, which allows
design, comprehension and maintenance of planning domains and
corresponding problems. The system accommodates for modular-
ity, as domains and problems can be designed separately, and com-
patibility with standards, as most visual elements present in the
Fig. 1. A full screenshot of
system correspond to PDDL elements. Compliance with the PDDL
standard is also achieved through the import and export features.
Another important characteristic of the system is the increased
flexibility in integrating the planning system that will be exploited
each time when attempting to acquire a solution to a specific plan-
ning problem. This is accomplished by employing the current tech-
nology of web services. The system was implemented in Java for
portability and interoperability purposes.

The full interface of the system during the design of a domain
and a corresponding problem is depicted in Fig. 1. The main win-
dow includes the Ontology Editor and the Operators Editor, the
combined use of which accomplishes modeling of a planning do-
main, as well as the Problem Editor where corresponding planning
problems are designed.

The architecture of the system is presented in Fig. 2. VLEPPO
comprises of four components, namely the Visual, the Planning,
the Import/Load and the Export/Save Components.

A planning domain is reflected in the Visual Component using
graphical notations corresponding to various PDDL elements, such
as predicates and operators. Similarly, planning problems based on
this domain can also be visualized. During visual design, the sys-
tem guides the designer in order to ensure consistency in the
resulting domains, as it performs real-time validity checks. The
key feature of the Visual Component is its simplicity and conve-
nience; at the same time, a high degree of correspondence to PDDL
is achieved (Hatzi, Vrakas, Bassiliades, Anagnostopoulos, & Vlaha-
vas, 2007a). The range of the PDDL elements that can be repre-
sented in the system is quite wide, and covers the elements that
are used more frequently in contemporary planning domains and
problems. Specifically, the PDDL requirements (Gerevini & Long,
2005) covered by the system are the following: :strips, :typing,
:negative-preconditions, :fluents, :durative-actions, :derived-pred-
icates and :timed-initial-literals. The Visual Component also serves
plan visualization purposes, for plans that comply with the PDDL+
standard (Fox & Long, 2002).

The Import/Load and Export/Save Components provide addi-
tional features which ensure interoperability and conformation
to the standard. The features include exporting the domains and
problems to PDDL, as well as importing existing domains and prob-
lems from PDDL for visualization, modification and maintenance
purposes. Therefore, the designer is enabled to manipulate existing
domains and problems in an intuitive way, even if they are not
familiar with the language syntax. At the same time, save and load
the system interface.



Fig. 2. The architecture of VLEPPO.
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functions for both domains and problems can be alternatively
used, which, unlike export and import functions, have the ability
to preserve visual information such as colors and positions of the
elements, even for domains that are under development.

Finally, in order to accommodate for interoperability with other
planning systems that actually perform the planning procedure,
the Planning Component has been developed, which accommo-
dates cooperation with external planners. This includes a web ser-
vice client component which offers the user the chance to select
among planners that are implemented or wrapped and deployed
as web services. Thus, the user is not restricted to a single planning
algorithm, but has the ability to experiment with planners and can
even attempt to solve the problem with many planners simulta-
neously, as the planning procedure is not executed locally. Further-
more, in order to avoid considering an internet connection
mandatory for the planning operation of the system, another plan-
ning component which solves the problem locally has also been
incorporated.

The full implementation code of the VLEPPO system comple-
mented with example PDDL files can be downloaded from http://
www.dit.hua.gr/~raniah/vleppo_en.html.

4. Visual design of planning problems with VLEPPO

This section provides a description of the visual elements of-
fered by the system for modeling planning domains and problems,
while their correspondence to PDDL elements explained in Section
2.2 is pointed out. The features of the system are described using
well-known planning examples.

4.1. The domain entities and relationships

The VLEPPO system employs the well-known formalism of the
entity-relationship model, as seen through the PDDL standard, in
order to describe the structure of the planning domains; therefore,
the classes in a planning domain are the entities, while the predi-
cates are the relationships. These elements are visually repre-
sented in the system by distinctive shapes and connections
between them.

A class in PDDL, denoted by a colored circle, represents a type of
domain objects or action parameters. Based on a class, correspond-
ing operator parameters and problem objects can be created, bear-
ing the same color for instantaneous identification.

A relationship, denoted by a rectangle, corresponds to a domain
predicate in PDDL and is used to describe associations between
classes, or properties of classes, in the unary predicate case. As
with classes, the color of the relationship can be used to track
the occurrences of the predicate in the operators or problems.

Relationships are associated with classes through connections.
Each connection represents an argument of a relationship, while
the class shows the type of the argument. A relationship may have
an arbitrary number of arguments of any type, which are increas-
ingly ordered upon creation.

As an example, consider a very common domain in the plan-
ning community, the Gripper domain (McDermott, 1998). In this
domain there is a robot with N grippers which moves in a space
composed of K rooms that are all connected with each other so
that the robot can reach any room from any other room with
one single movement. There are also L numbered balls which
the robot can carry from their initial positions to some destina-
tion, holding one ball in each gripper at any given time. The Grip-
per domain has four relationships: at, which specifies the position
of a ball in a room, holding, which is used to denote that some
gripper is holding a ball, at-robot, which specifies the position
of the robot, and empty, which states that a gripper is not holding
any ball. The classes and relationships of the domain, along with
their connections are depicted in Fig. 3.

The aforementioned elements – classes, relationships and con-
nections – combined together, form the entity – relationship model
of the data for the planning domain the user is dealing with, which
is visually represented in the Ontology Editor. Although there are
other formalisms available, such as UML (UML), to describe the
structure of data in a domain, this model was estimated to ap-
proach best the PDDL structure.

http://www.fire.dit.hua.gr/~raniah/vleppo_en.html
http://www.fire.dit.hua.gr/~raniah/vleppo_en.html


Fig. 3. The relationships in the Gripper domain.
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4.2. Representing operators

Operators in VLEPPO have a direct correspondence to PDDL ac-
tions. The essential elements of their definition are the precondi-
tions, the results (or the add/delete lists), and their parameters,
each one depicted visually in a separate column of the operator
shape in the Operators Editor. Preconditions and results can be cre-
ated from predicates while parameters can be created from classes.
Connections can also be created provided that there are corre-
Fig. 4. The operators in t
sponding connections in the Ontology Editor. Other elements that
can be imported in operators will be discussed in more detail in the
paragraph about advanced features.

The Gripper domain involves three operators, shown in Fig. 4:
move, which enables the robot to move between rooms, pick, which
allows a gripper to lift and hold a ball, and drop, which is the oppo-
site of pick and is used when a ball is no longer held by a gripper.

The default view for an operator is in preconditions/results view,
when the column on the left shows the preconditions that must
hold for the action to be executed and the column on the right
shows the state of the world after the execution of the action (in
terms of predicates affected by this action). However, in some
cases this is not convenient or desirable; therefore, the system of-
fers another option, closer to the PDDL definition of operators,
which is the add/delete lists view. If selected, the column on the
right changes to show the facts that will be added and deleted from
the current state of the world upon the application of the action.
The user can switch between the two views at any time, however
changes to the operators are allowed only in the preconditions/re-
sults view. For demonstration purposes, the two views for the pick
operator are shown in Fig. 5.

Moreover, the system supports operators that are supposed to
have duration, referred to as durative actions in PDDL. The defini-
he Gripper domain.



Fig. 5. The two views for the pick operator in the Gripper domain.
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tion of such a durative action includes setting the duration of an
operator, in combination with temporal annotations to the precon-
ditions and results. The durative view of an operator, along with
the dialogues for the definition of temporal annotations are de-
picted in Fig. 6.

4.3. Representing problems

For every domain defined in PDDL, a large number of problems
that correspond to this domain can be defined by describing an ini-
tial and a goal state. The problem shape in the visual system is
much like the three-column operator in form, but different seman-
Fig. 6. A durative action and the dialogue
tically. The left column holds the predicates in the initial state, the
right column holds the predicates in the goal state, and the middle
column holds the objects that take part in the problem definition.
As with operators, the aforementioned elements can be created
from the corresponding elements in the Ontology Editor.

An example of a problem for the Gripper domain is presented in
Fig. 7. In this instance, there are two rooms (Bedroom, Kitchen),
one ball (Ball1) and the robot has two grippers (rightGripper, left-
Gripper). The initial state of the problem defines the location of the
robot and the ball, which are the Kitchen and Bedroom, respec-
tively, and that both grippers are free. The goal state requires that
the destination of both the ball and the robot is the Kitchen.
boxed for its temporal annotations.



Fig. 8. An example of two constants of the type ‘‘product”.

Fig. 9. An example of a derived predicate.

Fig. 7. A problem instance of the Gripper domain.
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4.4. Advanced features

The basic PDDL features described above are adequate for sim-
ple planning domains and problems, while for more complex prob-
lems advanced features of the language are used, described in this
section.

A PDDL constant is represented in the system similarly to a
class, enhanced with a red1 outline, as depicted in Fig. 8. Constant
must be of some type, and can be used either in an operator or in a
problem, where they behave similarly to parameters or objects,
respectively.

A derived predicate is an advanced PDDL feature that is repre-
sented by a group of design elements in VLEPPO, which includes
the predicate enhanced with an AND/OR tree (Nilsson, 1998) that
indicates the way it derives from other relationships. The tree is
constructed from binary AND and OR and unary NOT nodes, while
each of the node arguments can be either another node of any type,
or a relationship. An example of a derived predicate is presented in
Fig. 9, stating that a person can go out if it is sunny, or if it is raining
and an umbrella is available.

Among the advanced features is the option to indicate that a
predicate is timeless, that is, the predicate is true at all times. This
operation involves a lot of validity checks, which will be explained
in the corresponding paragraph.

Another PDDL feature incorporated in VLEPPO are numerical
expressions, which involve the definition of a number of elements
1 For interpretation of color in Fig. 8, the reader is referred to the web version of
this article.
such as functions in the Ontology Frame and conditions or assign-
ments incorporating these functions in the Operators Frame. Fur-
thermore, for each function imported in the system, the initial
values of the function for the problem at hand have to be defined
in the Problem Frame. As an example from the Rover domain
(IPC-5), consider a function relating a vehicle and two waypoints
with the cost for the vehicle to traverse the distance between these
waypoints. The definition of the function in the Ontology Frame
and the corresponding values in the Problem Frame are depicted
in Fig. 10.

Finally, maps can be created for every relationship that has ex-
actly two arguments of the same type. Maps significantly facilitate
problem readability when the relationship they represent is ex-
pected to have many instances in the initial state of a problem,
as these instances can be omitted from the initial state definition.
Each connection in the map represents an instance of the relation-
ship, while the objects represent the arguments, as shown in
Fig. 11. Maps do not have a direct correspondence to PDDL; there-
fore, in order to maintain full compatibility, their use is not manda-
tory. However, if used, they accommodate comprehensiveness in
initial state definition.
4.5. Syntax and validity checking

A very important feature of the system is syntax and validity
checking, as it detects errors and inconsistencies at the time they
emerge and prevent them from propagating. Planning domains
are checked for consistency within their own structures, and plan-
ning problems have to be checked for consistency and correspon-
dence to the related domains. The remainder of this paragraph
provides several examples illustrating the validity assurance pro-
cesses of the system.

The user is allowed to insert a new connection in an operator or
in a problem only if a corresponding connection exists in the
Ontology Editor, while special care must be taken to verify that
Fig. 10. An example of a function and its values.



Fig. 11. A map for the relationship connected (C1, C2).
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the types of parameters and objects match to the types of predicate
arguments.

As far as constants are concerned, the system ensures the defi-
nition of their class before they are inserted in an operator or a
problem. Furthermore, additional checks are performed about the
types of arguments, similar to those performed for simple objects.

Timeless predicates are, by definition, allowed to appear in the
preconditions of an operator, but not in the add or delete lists. As a
consequence, adding a timeless predicate in the preconditions part
of an operator will trigger its automatic appearance in the effects
part as well, so the add and delete lists will not be affected. Fur-
thermore, before setting a predicate timeless, checks will have to
be performed to determine if this operation is allowed.
5. Import and export functions

5.1. Exporting to PDDL

The interoperability and increased flexibility of the system
would not be possible without compliance with the PDDL stan-
dard. Visual elements taking part in domain definition, as well as
comments, can be combined to formulate constructs and exported
to a PDDL file, which is automatically enhanced with the appropri-
ate requirements tag, as detected by the system. Some details clar-
ifying export are presented in the remainder of the paragraph.

Upon export, the user is offered the option to use typing on de-
mand, producing slightly different domains. In case the require-
ment :typing is declared, each class name is included in the
(:types) construct of the domain definition, and for each object,
parameter and constant its type must be declared wherever they
appear. In case typing is not used, classes are treated as timeless
unary predicates and appear along with the other predicates of
the domain. In addition, for each parameter in an operator, a pre-
condition that denotes its type must be added in the operator def-
inition, while likewise, for each object, a new initial literal denoting
its type must be included in the problem definition.

Exporting the domain operators requires a combination of sev-
eral elements of the Operator Editor and the Ontology Editor,
namely predicates, classes, variables and constants, functions,
and obviously the operators themselves. Slight changes occur to
an operator definition depending on whether the :typing require-
ment is declared, as the types of the parameters have to be in-
cluded in the definition.

Exporting the problems is quite similar to exporting the opera-
tors, however, the problems are stored in a different PDDL file;
therefore, numerous problems can be defined for the same domain.
If maps are used, care must be taken to include the information
they embody in the list of predicates included in the initial state.
Furthermore, if functions are used, their initial values provided
by the user in the Problem Editor will be part of the declaration
of the initial state of the problem, in the corresponding construct.
5.2. Importing from PDDL

VLEPPO also offers the feature of importing planning domains
and problems expressed in PDDL, visualizing them, and thus en-
abling the user to manipulate and maintain them. Both typed
and non-typed PDDL files are supported; however, importing
non-typed PDDL is subject to some restrictions. If no typing is used,
syntax alone might not be enough, and semantic information
might be necessary in order to discriminate types of objects from
unary predicates. A module for translating non-typed to typed
PDDL has been developed, which scans the non-typed PDDL file
for unary predicates, which are candidates for being considered
as ‘‘types” and consequently examines which of them could be
timeless, by ensuring that they do not appear in the add or delete
lists of any operators, a distinctive property of timeless predicates.
After determining the types, the translation process can proceed.
Although the non-typed to typed PDDL translation module has
the best possible performance provided the information contained
in PDDL files, when the domain includes ordinary unary predicates
which do not happen to appear in any add or delete lists, they
might be mistaken for types. In such cases, the intervention of a
user, who can identify semantics, is required, but even so, the effort
is minimal compared to the effort of designing the domain from
scratch.
5.3. Save and load functions

Importing from and exporting to PDDL is essential as it provides
formalization of the planning domains and problems created by
the visual system and interoperability with planning systems.
However, PDDL cannot capture visual information, although in
some cases the user might have spent valuable effort to customize
the way the planning domain and problems appear. To compensate
this, an internal file format has been developed with the extension
‘‘.vff” (VLEPPO File Format), which is able to save not only the
essential information of a planning domain and problem, i.e. the
design elements such as objects, relationships, operators, but also
the visual information such as colors and positions of these ele-
ments. Consequently, the load function is able to read this file for-
mat and restore the planning domain and problem to the exact
state that it was in when saving was performed. Save and load
functions are particularly useful during the development of the do-
mains, when they are considered incomplete and exporting them
to formal PDDL is not suggested.
6. Obtaining solutions to planning problems

6.1. Interface with planning systems implemented as web services

As VLEPPO is intended to be an integrated system not only for
designing but for solving planning problems as well, an interface
with planning systems is necessary. This is achieved by providing
the ability to discover and communicate with web services which
offer implementations of various planning algorithms. Moreover,
existing planning systems can expose their functionality through
web services and be utilized by VLEPPO (HAP-WS).

To this end, a dynamic web service client has been developed as
a subsystem. The requirement for flexibility in selecting and invok-
ing a web service justifies the decision to implement a dynamic cli-
ent instead of a static one. In this way, the system can exploit
alternative planning web services according to the problem at
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hand, as well as cope with changes in the definitions of these web
services.

The communication with the web services is performed by
means of exchanging SOAP (Simple Object Access Protocol) mes-
sages, as the web service paradigm dictates. However, in a higher
level, the communication is facilitated by the use of the PDDL lan-
guage, which constitutes the common ground between the visual
system and the planners. An additional advantage of using PDDL
is that the visual system is released by the obligation to determine
the PDDL features that a planner can handle, thus leaving each
planning system to decide for itself.

The planners implemented as web services accept as inputs the
PDDL descriptions of the planning domain and problem, perform
the planning procedure and respond with the plan for the problem
at hand. An example WSDL (Web Services Description Language) file
describing typical planning web service API is depicted in Fig. 12.

The employment of web services technology results in the inde-
pendency of VLEPPO from the planning or problem solving module
and increased flexibility. Such a decoupling is essential since new
planning systems which outperform the current ones are being
developed. Each of them can be exposed as a web service and then
invoked for solving a planning problem without any further
changes to system or the domains and problems already designed
and exported as PDDL files.
6.2. Solving planning problems locally

Although VLEPPO aims at exploiting the capabilities of the web
service technology in order to be independent from the planning
Fig. 12. An example WSDL docum
module, and thus take advantage of different planners according
to the problem at hand, an option to solve the problems locally is
also offered. This option can be used at any time without any spe-
cial machine set up; therefore, the lack of internet connection or
the lack of available planners implemented as web services do
not prevent the user from obtaining valid plans, although the plan-
ning process might not be optimal. Currently, the planner used for
solving the problems locally is LPG-TD (Gerevini, Saetti, & Serina,
2004; Gerevini et al., 2005), which proved to perform very well
based on the results of the 4th International Planning Competition
(IPC-4) (IPC, 2004).
7. Case study

In order to illustrate the use of the system, even on alternative
domains, a case study concerning a real world problem has been
selected, rather than the typical planning domains used in compe-
titions and during the description of the system in the previous
sections. The case study concerns web service composition; there-
fore, a brief introduction to web services along with a discussion
about how a web service composition problem can be viewed as
a planning problem is provided (Vrakas, Hatzi, Bassiliades, Anag-
nostopoulos, & Vlahavas, 2008). A system with visual capabilities
such as VLEPPO is very useful when one attempts to approach
web service composition problems through planning, as visual
modeling significantly facilitates understanding of the dynamics
of the available web services and their possible interactions during
composition.
ent for a planner web service.
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7.1. Semantic web service composition

A web service is a software system identified by a URI (Univer-
sal Resource Identifier), whose public interfaces and bindings are
syntactically defined and described the Web Services Description
Language (WSDL) (WSDL, 2001). Its definition can be discovered
by other software systems, which may then interact with the
web service in a manner prescribed by this definition, using XML
(XML) based messages conveyed by internet protocols (Booth
et al., 2003). Web services aim to simplify the process of distrib-
uted computing by defining a standardized mechanism to describe,
locate, and communicate with online software systems.

When individual web services are limited in their capabilities,
they can be composed to create new functionality in the form of
complex web services, a process called web service composition
(Piccinelli, 1999), which is emerging as a new model for interac-
tions among distributed and heterogeneous applications. To truly
integrate application components on the Web across organization
and platform boundaries merely supporting simple interaction
using standard messages and protocols is insufficient (van der
Aalst, 2003) and web services composition languages, such as
BPEL4WS (Thatte, 2003), are needed to specify the order in which
messages are exchanged and operations are executed.

Automatic application interoperability is hard to achieve at low
cost without the existence of the Semantic Web. Semantic Web is
the next big step of evolution in the Web (Berners-Lee, Hendler, &
Lassila, 2001) that includes explicit representation of the meaning
Fig. 13. An example of OWL-S to PDDL transformation. (a) The OWL-S p
of information and document content (namely semantics). The
combination of the Semantic Web with web services, namely
semantic web services, achieves the automatic discovery and com-
position of web services (McIlraith, Son, & Zeng, 2001) through
the use of semantic web service descriptions, on top of WSDL
descriptions, such as OWL-S (OWL Services, 2003), that allow the
web service semantics to become comprehensible by other
agents/programs through ontologies.

The capability of automating web service composition is very
important for the survival of web services in the industrial world
as manual composition becomes significantly hard as the number
of available web services increases (Bassiliades, Anagnostopoulos,
& Vlahavas, 2005). A very promising direction to automatically
composing semantic web services is through the use of AI planning
techniques (Alfredo, 2003).
7.2. Web service composition as a planning problem

Using planning, the semantic web service composition problem
can be described as a desired state to be achieved by the complex
service and the planner will be responsible to find an appropriate
sequence of simple web service invocations, to achieve this state.
In this way, non-predetermined web services can be formulated
on demand. The abilities of simple web services can be described
in semantic languages such as OWL-S and can be considered as
planning operators.
rofile of the BookToPublisherService. (b) The PDDL action produced.



Fig. 14. The predicates for the electronic bookstore domain.

Fig. 16. A problem for the electronic bookstore domain.
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To elaborate, consider the case were a user wishes to use a com-
plex web service which, when provided with some input data, will
return some required information. There may be a number of alter-
natives when formalizing the problem of web service composition
Fig. 15. The actions for the t
as a planning problem (Carman, Serafini, & Traverso, 2003), how-
ever the most straightforward solution is the following: the inputs
provided by the user form the initial state of the problem, while
the desired outputs form the goals of the problem. The available
semantic web service descriptions are used to obtain the actions
or operators available in the planning domain, as they are de-
scribed in the STRIPS formalism. Each action has the same name
as the name of the corresponding web service, while its precondi-
tions list is formed by the inputs of the service. The add list of the
action includes the outputs of the service and the delete list is left
empty.
ravel planning domain.
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It should be noted that the formalization presented above in
some cases might require the planning system to be aware of pos-
sible semantic similarities among syntactically different concepts.
If this situation occurs, it can be dealt with utilizing ontologies,
which describe relationships and similarities among concepts.
Fig. 18. The plan produced by LPG-td.
7.3. Example

Initial stages of experimentation on web service composition
using VLEPPO included modeling the web services in the system
from scratch. However, in order to obtain realistic results, case
studies involving real test sets were pursued. The test sets contain-
ing semantic web service descriptions in OWL-S and their corre-
sponding ontologies were obtained from OWLS-TC (OWLS-TC).
Consequently, they were modified, parsed by the PORSCE II system
(Hatzi et al, 2008), translated into PDDL and imported in VLEPPO.
An example of the transformation of an OWL-S web service
description into a PDDL action is presented in Fig. 13, however fur-
ther discussion about the transformation process is beyond the
scope of this work.

The domain presented here refers to electronic bookstores and
the predicates it includes are shown in Fig. 14. It should be noted
that in this web service scenario the predicates do not have any
arguments, therefore an auxiliary argument not affecting the re-
sults had to be added, as some of the planners tested had trouble
handing predicates without arguments.

The objective of the web service composition scenario is the
electronic purchase of a book. Fig. 15 presents some of the domain
web services turned into actions, in add/delete lists view, that will
be used in the complex service satisfying the user requirements. As
already mentioned, the inputs of a web service are the precondi-
tions of the action, while the outputs of the service are the add list.
The delete list is left empty, since no web service at this point is
considered to be able to retract information or data from the world
state (Hatzi, Vrakas, Bassiliades, Anagnostopoulos, & Vlahavas,
2007b).

A number of different problems can be defined corresponding to
this domain definition. An example is presented in Fig. 16 where
the supposed user provides a book title and author, credit card info
and the address that the book will be shipped to, and requires a
Fig. 17. A full screenshot of the interface
charge to credit card for the purchase, as well as information about
the shipping dates and the customs cost for the specific item.

A full screenshot of the system interface with the domain and
problem described above is depicted in Fig. 17.

The problem was solved locally using the LPG-td planning sys-
tem, and the produced plan is presented in Fig. 18, while the visu-
alization of the plan in levels is also provided in Fig. 19.
8. Related work

This section presents the most prominent experimental efforts
to construct general-purpose planning tools that have appeared
so far.
with the case study presented above.



Fig. 19. Visualization of the plan.
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The GIPO system (McCluskey, Liu, & Simpson, 2003) is based on
an object-centric view of the world. The main idea behind it is the
notion of change in the state of objects throughout plan execution.
Therefore, the domains are modeled by describing the possible
changes to the objects included in them. The GIPO system is de-
signed to work with both classical and Hierarchical Task Network
(HTN) domains. In both cases, it offers graphical editors for domain
creation, planners, animators for the derived plans and validation
tools. The domain models are represented mainly in an internal
representation language called Object Constraint Language (OCL),
which is object oriented, in accordance with the GIPO system. Only
limited translation from the internal representation format to
PDDL is offered. Local planners can be integrated into the GIPO sys-
tem, however they must adhere to a number of restrictions, while
the integration process is burdensome.

As far as the graphical aspects of GIPO are concerned, the most
fundamental of them are the definition of classes of objects, pred-
icates, and object class states. The above elements have to be de-
fined in the order mentioned. The operators are thought of
simply as transitions between states of an object. In addition, GIPO
provides the opmaker, a tool which can derive operator definitions
from partially defined domains and sample plans. Furthermore,
planning problems, referred to as tasks, can be defined in the form
of initial and goal states. Finally, some additional tools are in-
cluded, such as the Life History Editor, which accommodate more
advanced features and better understanding and manipulation of
the domain.

The major difference between GIPO and the proposed VLEPPO
system is the way they deal with planning domains. The object ori-
ented GIPO has its own internal representation based on the OCL
language. Thus, the design process is driven to follow this repre-
sentation. On the contrary, the VLEPPO system provides design ele-
ments which correspond as accurately as possible to the well
established elements of STRIPS/PDDL. Therefore, designing a plan-
ning domain and problems is much more straightforward with re-
spect to the prevailing standards, interoperability with planning
systems that conform to those standards comes naturally. Further-
more, the proposed system offers design elements that cover a
wider part of PDDL, such as derived predicates and constants. In
addition, an effort has been made to preserve the semantics and
the names of the PDDL elements in order to decrease the learning
curve of those users already familiar with the language. Finally, an-
other significant difference lies in the interaction with external
planning systems, which in the case of GIPO requires manual con-
figuration and the planning systems available are limited to those
that fulfil certain requirements, while in the case of VLEPPO, the
only requirement about external planning systems is their compat-
ibility with the PDDL standard.

SIPE-2 is another System for Interactive Planning and Execution
of the derived plans (as the name implies) (Wilkins, 2000). As it is
designed to be performance-oriented, it embodies many heuristics
for increased efficiency, as well as the ability for providing advice
to the built-in planner. Among its useful features is the plan execu-
tion monitoring, which enables the user to feed new information to
the system in case changes occur in the world and the graphical
interfaces for knowledge acquisition and representation, as well
as plan visualization. The operators, plans and problems can be
represented using the ACT formalism (Wilkins & Myers, 1994),
and they can be visually manipulated through the ACT-Editor.
The operators have the same semantics as in PDDL, meaning that
they describe the changes in the state of the world, but there are
also significant differences. They can have various levels of abstrac-
tion, and they can be applied to any situation, producing different
effects each time, which are determined using deductive rules.
Moreover, the operators state additional information, such as
(but not restricted to) constraints, conditions and purpose, which
denotes which goals the operator can solve. On the other hand,
the sort hierarchy (classes) structured in the form of frames and
can be manipulated through the GKB-Editor, a tool for editing
knowledge bases in Frame Representation Systems. The user inter-
face allows browsing any part of this hierarchy, as well as creating
and editing classes and instances.

SIPE-2 is an elaborate system with a wide range of capabilities.
However, it uses the ACT formalism, which is quite complicated
and does not correspond directly to PDDL. Therefore, there is no
way to easily use an existing PDDL file to construct a domain in
SIPE-2, or export the domain or problem to PDDL, especially if
the PDDL domain uses extended features, a restriction which sig-
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nificantly decreases the interoperability of the SIPE-2 system with
external planning systems. Another difficulty of using the system is
the two totally separate graphical environments for elements of
the domain, instead of a unified one. Finally, the system does not
offer the capability to employ different planning algorithms other
than the one implemented in it.

ASPEN is an environment for automated planning and schedul-
ing (Fukunaga, Rabideau, Chien, & Yan, 1997). It is an object-ori-
ented system initially targeted to space mission operation
domains. Its features include an expressive constraint modeling
language which is used for defining the application domain, sys-
tems for defining activity requirements and resource constraints,
as well as temporal constraints. In addition, a graphical user inter-
face is included, but its use is confined to visualizing plans and
schedules in systems where the problem solving process is
interactive.

ASPEN is not intended to be a general purpose system for do-
main and plan generation; on the contrary, it was developed for
the specific purposes of space mission operations. Therefore, it uses
its own object-oriented language, AML (Aspen Modeling Lan-
guage). AML has only a few distant correspondences to PDDL,
and the system does not provide the capability of exporting the do-
mains and problems in PDDL. Furthermore, it does not offer a
graphical interface for modeling the planning domains and
problems.

Other systems that provide user interfaces such as Cox and
Veloso (1997) and Pegram, St. Amant, and Riedl (1999) are beyond
the scope of this discussion as they are developed for specific pur-
poses and therefore cannot cover the needs of a general purpose
planner.

In conclusion, although the above systems are useful, none of
them offers direct visual representation of PDDL elements. This is
essential for facilitating interoperability with external planning
systems and design for users already familiar with the language
and. Moreover, even the systems which offer translation to PDDL
do not cover important features of the language. In addition, most
of the aforementioned systems are confined to a single built-in
planning algorithm. The proposed system attempts to tackle these
issues by directly representing and using PDDL elements to define
planning domains and problems and by cooperating with a variety
of planning systems implemented or wrapped and deployed as
web services.
9. Conclusions and future work

This paper presented VLEPPO, a visual system for facilitating the
design and maintenance of planning domains and problems
through a convenient graphical user interface, as well as obtaining
solutions to planning problems utilizing different planners. A high
degree of flexibility is provided in cooperating with planners, as
they may be either local, or implemented as web services, as the
system offers a web service client in order to exploit such function-
ality. One of the main concerns while designing and developing the
system was to maintain the interface as simple as possible, while
at the same time provide high correspondence to the PDDL lan-
guage, in order to accommodate interoperability and compatibility
with other planning systems through import and export functions.

The use of the system was demonstrated with a case study
involving web service composition, viewed as a planning problem.
This is an example not typical in the area of planning, but it depicts
the convenience of the interface and the ability of the system to
handle not only classical planning problems but also alternative
problems that can be approached through planning.

As the area of planning for web service composition seems very
promising, future extensions of the system will include compo-
nents oriented to this direction. Added functionality will include
integration with the PORSCE II (Hatzi et al., 2008) system in order
to obtain planning domains from OWL-S web service descriptions
automatically. Such an integration will also allow planning with
semantic relaxation provided by the Ontology Management mod-
ule of PORSCE II. Moreover, communication with Universal
Description, Discovery and Integration (UDDI) registries (UDDI,
2004) is possible, in order to obtain new web services descriptions
and formulate the available actions.

In addition, extensions to the visual interface in order to accom-
modate the visual representation of web services as planning ac-
tions are necessary. As the number of available actions in such
domains is expected to increase over time, different representation
schemes have to be developed in order for the interface to remain
efficient. Such extensions should include modular view of opera-
tors in related groups, and search capabilities. Furthermore, plan
manipulation would be a useful feature, as the produced plans
might not always satisfy the user. Finally, the addition of plan met-
rics, apart from covering the corresponding PDDL feature, will en-
able the user to compare plans produced by different planners and
select the best one based on several criteria.
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