
OpenSocialGov: A Web 2.0 Environment for
Governmental E-Service Delivery

Alexandros Dais, Mara Nikolaidou, Dimosthenis Anagnstopoulos

Department of Informatics and Telematics
Harokopio University of Athens

70, El. Venizelou Str, 17671, Athens, Greece
{adais, mara, dimosthe}@hua.gr

Abstract. To achieve transformational government (T-Gov), the interaction
between citizens and government should be explored under a new perspective
enhancing citizens’ active participation. Web 2.0 paradigm could support many
of the key features of such T-Gov interaction model. In this paper we explore
the potential to utilize OpenSocial API to build OpenSocialGov, a set of
libraries to construct Web 2.0 environments for the delivery of governmental e-
services. In practice, OpenSocialGov enables citizens, businesses and public
agencies to participate in a “governmental network”, similar to a social network,
which facilitates them to establish different kinds of relationships between them,
as in the real world, and collaborate to perform specific tasks, composed by
simple e-services developed by public agencies or even third party entities.
Basic OpenSocialGov features and implementation issues, as the extension of
OpenSocial API to meet the requirements of the proposed T-Gov interaction
model are also discussed.

Paper Category: Short
Keywords: Transformational Government (T-Gov), Web 2.0, Cross-

organization Service Composition and Delivery, OpenSocial API

1 Introduction

The transformation of the IT governmental services (T-Government or T-Gov) has
become an emergent challenge, posing new requirements to governmental e-service
delivery to citizens and businesses, public agencies co-operation and shared e-service
culture [1]. To achieve T-Gov, the interaction between citizens, businesses and
government should be explored under a new perspective enhancing the active
participation and collaboration of all of them. Such a model should take into account
all types of government interaction (C2G, B2G, G2G) and the notion of intermediates
acting on citizen’s behalf. Web 2.0 environment, with its emphasis on collaboration
and communication, can affect government to citizen interaction and electronic
government strategies, accelerating government transformation [2].

In [3] we suggested the adoption of Web 2.0 technology model for the provision of
governmental e-services to enhance citizen-centric service delivery and improve
citizen collaboration. The proposed model handles citizen’s data from a different
perspective. Most government processes and services are based on the assumption

that government agencies own all information about their constituents and they are
the only data steward to ensure compliance with data protection laws. In this
dominant model, the citizen has limited or no access to the data that he/she is
involved. Following the Web 2.0 concepts, citizens can hold their social data in
profiles owed and managed by their own, thus retaining control of who can or can not
access their data. In other words, citizens provide the content to the model and allow
or forbid any governmental interaction.

The corresponding interaction model takes into consideration any kind of
relationship between the constituents of T-Gov, namely citizens, business,
government agencies and any type of intermediates, and allow them to communicate
in a simple fashion, similar to one they are used to in real life. Likewise, Government-
to-Government interaction necessary to perform a complex task is accomplished
through multiple Citizen-to-Government and/or Business to Government interactions.
Business-to-Government interaction is also citizen-centric, since properly authorized
Citizens administer Business profiles and interact with Government Agencies to
accomplish business’ tasks. Such a perspective places the citizen in the centre of the
interaction model leading to a transformation from a provider-centric (multiple
citizens are related to a public agent) to a citizen-centric (multiple public agents are
related to a citizen) context.

Existing social networking platforms could support many of the key features of the
proposed model. Firstly, the relations mechanism of social networks could be used to
implement the concept of the intermediate citizens. Additionally, citizens may
execute applications provided by public agencies or third party entities in a
collaborative fashion.

In this paper we explore the potential to utilizing existing social network
development environments to build OpenSocialGov, a set of libraries to construct
Web 2.0 environments to support the suggested interaction model for T-Gov services.
OpenSocial [4], developed by Google, defines a common API for social applications
across multiple websites, aiming to become a “de-facto” standard for social network
application development. OpenSocial's goal is to make more applications available to
more users, by providing a common API that can be used in many different contexts.
Utilizing OpenSocial API, Public Agencies may create applications using standard
JavaScript and HTML, that can be executed within any “governmental network”,
distributed in every administrative level (European, Federal, Local). For example, an
application created by the Greek Ministry of Economics may be loaded in a Spanish
“governmental network” and vice versa.

Though, OpenSocial API should the extended to meet the requirements of our T-
Gov interaction model. More specifically, the following issues should be explored:

• Profile and Relationship management for all participants (citizens,
businesses and public agencies)

• Application development and integration
• A Registry for the application discovery.

The rest of the paper is structured as follows: Section 2 provides a brief introduction
regarding OpenSocial features. OpenSocialGov basic features and provided services
reside in section 3, along with the necessary extensions of OpenSocial API in order to
implement it. Conclusions and future work are discussed in section 4.

2 OpenSocial Scope and Features

OpenSocial is a set of APIs for implementing interoperable social networks. These
social networks, known as OpenSocial containers, allow OpenSocial Applications to
access information stored within the social platform. Applications are built using
OpenSocial APIs, which expose methods for accessing social data (e.g. information
about people, groups of people and their friends), application data (e.g information
created by Applications executed within a user profile, for example High scores of an
application game) and activities (e.g. a list of activities that the user has recently
accomplished), within the context of a container. The same OpenSocial Application
can run on more than just one container, e.g. social network platform as iGoogle [5]
or MySpace [6]. The latest version of OpenSocial API is 1.1.

Depending on usage requirements and programming style, OpenSocial
Applications may be implemented as a Social Mashup, which is a lightweight
OpenSocial application executed within the social network container or a Social
Application, executed within the social network container but relying on an external
server for processing and rendering data. In any case, OpenSocial allows secure API
authorization via OAuth protocol [7]. OAuth defines a method of signing requests so
that a recipient can verify that the request was not tampered with while in transit.
OpenSocial uses this approach to allow third party developers to verify that social
data passed to their servers was sent from a specific container. So it provides a secure
way to pass social data from an OpenSocial application to an external server and vice
versa, which is a crucial feature when implementing governmental e-services.
Perhaps the most fundamental aspect of OpenSocial API is Data Requests, since it
handles the information exchange between Containers, Applications, external servers
and users. They can be categorized in the following groups, all of which are utilized
in OpenSocialGov implementation:
• People Requests handling social data (such as FetchPerson and FetchPeople

returning information for a single individual and a group of individuals
respectively)

• Application Data Requests handling application data (such as
UpdatePersonAppDataRequest, or FetchPersonRequest storing and retrieving
application data respectively)

• Activities Requests handling activities data (including FetchActivitiesRequest
that returns a collection of activity objects previously generated)

3 OpenSocialGov: Features, Provided Services and
Implementation Issues

OpenSocialGov is a set of libraries to build a Web 2.0 environment utilizing
governmental e-service delivery, implemented as an OpenSocial container. In
practice, OpenSocialGov, enables citizens, businesses and public agencies to
participate in a “governmental network”, similar to a social network, which facilitates
them to establish different kinds of relationships between them, as in the real world,

and collaborate to perform specific tasks, composed by simple e-services developed
by public agencies or even third party entities.

3.1. OpenSocialGov Basic Features

The interaction model between citizens, businesses and public agencies supported
by OpenSocial and the relationships established between them is summarized in
figure 1.

Citizen

Citizen Profile

Business Profile

Application

Profile

administers

Assignor
owns

Assignee assign

is_installed

Governmental E-Serviceinvokes

Figure 1: OpenSocialGov Interaction Model

Citizens and businesses are represented by profiles, while a business profile must
always be administered by an authorized citizen, as in the real world. Thus, a single
sign-on is used by the citizen when logging in a OpenSocialGov container, enabling
him/her to access his/her citizen profile and all the business profiles he/she
administers. Applications, developed by Government Agencies or third party entities,
are installed and executed in Citizen and Business profiles. They invoke web-services
implementing specific governmental services, executed in Government Agency IT
infrastructure (outside OpenSocialGov container). Cross organizational tasks can be
accomplished by installing several applications from different organizations in a
profile and sharing the information that resides into the profile (application data
section) among them.

When dealing with the Government, often both businesses and citizens use
intermediates. This is depicted by the assign relationship, established among citizens
and businesses. The assignee can install and execute applications on behalf of the
assignor. The application should appear on both profiles with a difference in the title
bar; in the assignor profile the application declares the name of the assignor and in the
Assignor Profile the application declares the name of the assignee. The Assignor
Profile is the reference point for the coordination, the information extraction and the
control of the applications.

The assignor authorizes the assignee to do something for some period. The
citizen/business declares a domain for the tasks that the intermediate can handle. The
other parameter is the period of the authorization. An authorization can be granted
permanently or for a specific task to be completed.

3.2. Provided Services and Implementation Issues

A) Any OpenSocialGov container utilizes existing major OpenSocial features such as:
• Handling profiles and relationships. Basic OpenSocial operations support adding

and removing relationships (as the “friend” relationship supported by most social
networks) and adding/ removing applications in profiles.

• Data Persistence. OpenSocial defines a data store that applications can use to
read and write per-user and per-application data, otherwise known as "app data”,
utilized by OpenSocialGov to also handle citizens and businesses (either assignor
or assignee) application data.

• OAuth support. Protecting Citizen’s data is of vital importance. To prevent
unauthorized use of citizens’ data, OpenSocialGov container uses OAuth
parameter signing to create the signatures on requests. OAuth client libraries can
be used to verify the requests received from the container.

B) To implement OpenSocialGov containers, OpenSocial API is extended to support
the following features:

An extended relationship mechanism facilitating the “assign” relationship.
This relationship is established between the assignor and the assignee citizen or
business. The assign relationship is treated as a specialization of the friend
relationship. In a friend relationship, connected friends have access to each other’s
basic social data (including name, surname, list of friends). The assign relationship is
more complicated. In contrast to the friend relationship that either exists or not, the
assign one is characterized by a set of properties, such as the type (if it is permanent
or not), the duration (if it will be dropped when a time period will be elapsed or not)
and the domain it is valid for (e.g. corresponding Public Agencies or even specific
applications). Assignees can have access and use parts of the application data of the
assignor they are authorized to represent, based on the domain this relationship is
valid.

From the technical point of view, Applications installed by the assignee should be
executed with the assignor data. So a mechanism, sharing the assignor data among
assignees should be implemented. Furthermore, applications can be integrated in both
the assignor and the assignee profile with different title bars. This way; the
application declares the name of the assignor in the assignee profile and the name of
the assignee in the assignor profile. Such feature can be implemented by creating
groups of assignees (similar to the default friends group) that can access information
stored in the assignor profiles.

Citizens’ Interaction
Each citizen, either handing his/her profile or administrating a business one, and
corresponding assignees should be informed of each other’s activity. This is
accomplished utilizing an extension of OpenSocial ActivityStream library [4].
Activity Streams provide an intuitive, sequential log of the activities of each user and
others related to him/her. Basic operations supported in OpenSocial include storing
activities and retrieving activity streams for himself and friends. OpenSocialGov
container extends activity stream to provide an efficient way for the assignees to
interact. Besides informing citizens regarding pending assignments and assignment
acceptance, the same mechanism is used to inform each citizen for all the applications

assignees are executing on his/her behalf and pending results. When an application is
unable to find the necessary application data for its execution, a thread-activity named
by the application is created and spread to assignees. The assignees responsible for to
producing the application data needed (e.g. execute the appropriate applications) are
informed and may participate in the overall process. Every action taken to enable the
execution of the initial application, including a) the applications executed and b) the
application data (pending or completed) loaded to the citizen/business profile, is
added in the corresponding activity list.

OpenSocialGov Application Development and Deployment
Application development is based on Gadgets. Gadgets are autonomous software
components, based on HTML, CSS, and JavaScript,. not aware of the existence of the
other Gadgets. Inter-Gadgets interaction is be facilitated in the OpenSocialGov
container. In the latest version of OpenSocial (1.1), Inter-Gadget Communication was
introduced through OpenAjax Hub event management system [8]. By incorporating
this technology into OpenSocialGov Container, application data management
mechanism provides a publish and subscribe feature enabling applications to
subscribe to their input data and publish their output data. Thus, the execution of a
specific application is enabled when all necessary input data are available.

Assuming that an application, called electronic offer submission, needs data
provided by tax-clearance and insurance clearance applications to start its execution.
When invoked, it subscribes to its input data before actually executed. The
corresponding thread-activity is created, if the subscripted application data are not
available. Tax and insurance clearance application data are published by tax-
clearance and insurance clearance applications, when executed by corresponding
assignees (if any), enabling the execution of submit a proposal application.
Technically speaking, this feature can be implemented using the <Require> tag,
included in gadget’s header, which declares dependencies. For example, the following
declaration is included in submit a proposal gadget.

 <ModulePrefs title="electronic offer submission”>
 <Require feature="opensocial-1.1" />
 <Require feature="tax-clearance" />
 <Require feature="insurance-clearance" />
 </ModulePrefs>

Tax-clearance and insurance-clearance are input data labels found in the application
registry, discussed in the following.

C) Any OpenSocialGov container should also incorporate the following services,
implemented as external applications:

Application Registry
The registry facilitates application discovery. When registering an application, the
developer should describe it using metadata fields, necessary to identify the
application. The basic metadata needed to describe applications ([9]) are summarized
in Table 1.

When trying to accomplish a complex task, applications are coordinated based on
their input and output data described in the Registry. Though, applications are
registered by different organizations, thus the compatibility of terms used to describe

application data should be ensured. Semantic interoperability between different
organization vocabularies is based on a hybrid system, which involves a predefined
taxonomy maintained by public agencies and a folksonomy formed by citizens using
the applications. The creator of the application lists the input and output data from a
vocabulary, which has been previously populated from public agencies, while citizens
may tag input and output data using their own terms.

Table 1: Metadata characterizing Applications
Field Description

Identifier An unambiguous reference to the Application.
Title A name given to the application. It should be the formal title of the

service provided.
Version Applications can be modified and changes from one version to

another must be tracked.
Creator A Public Agent or third party organization or even a citizen

primarily responsible for making the Application.
Type The genre of the service offered by the application (e.g payments,

certificates).
Description A high level description of desired operation expressed in natural

terms.
Input Data An application may require some input data, either citizen’s

personal data or data produced by other applications.
Output Data The output of the application described in terms of data produced

by its execution.

The taxonomy embedded into the Application Registry should provide a standard list
of meaningful terms, which may be used to describe application data, and publish the
preferred terms in order to accomplish semantic interoperability between Public
Agencies at any level (for example European, Federal, Local). It can be implemented
collaboratively by the Public Agencies involved. Generally, Public Administration is
separated in domains (such as Business and Industry, Economics and Finance,
Environment, etc) reflecting the social needs. A generic hierarchical structure can be
applied, based on established public sectors vocabularies, such as UK IPSV
(Integrated Public Sector Vocabulary) [10]. Each public agency proposes a set of
formal terms that describe procedures involving citizens (e.g Value Added Tax
clearance certificate), which may be used to describe application input and output
data.

The registry should also facilitate citizens to express themselves regarding the
applications they use, through the Citizens Collaborative Tagging System. As a
application is integrated in the profiles, Citizens are asked to describe the application
freely with their own terms. In contrast to the Taxonomy, the Citizens Collaborative
Tagging System has no hierarchical structure. Free tagging allows citizen to use non-
preferred terms for the Public Agency applications, such as synonyms (for example
equivalent terms in different languages) or acronyms – abbreviations (such as VAT
clearance for Value Added Tax clearance).

Recommendation mechanism
The Recommendation mechanism is invoked by both the OpenSocialGov Container
and the Application Registry. Recommendation mechanism may assist citizens to find
and add in the proper profile the necessary applications for a cross-organization task
to be accomplished. When a citizens installs an application in a profile, the
application searches the corresponding profile (either citizen or business, either
current or the assignor’s if it is executed by an assignee) for the necessary input in
order to be executed. If the required input data is missing, the recommendation
mechanism may propose some applications that could fetch that data.

The recommendation mechanism may also be used when registering an
Application to assist the developer to effectively tag input and output data using both
the taxonomy defined by the government and the folksonomy formulated by citizens.

4 Conclusions and Future Work

A Web 2.0 environment utilizing governmental e-service delivery has been presented.
The novelty of the proposed approach relies on the establishment of a “governmental
network” between Citizens, Businesses and Public Agencies, utilizing social
networking concepts. The collaboration between them is facilitated in a way similar
as in the real world, by applications executed in citizen and business profiles, while
the assignment of specific responsibilities to intermediates is also supported.
OpenSocialGov container, based on OpenSocial API, is proposed for implementation
of the Web 2.0 environment. The way OpenSocial API should be extended for this
purpose is also discussed, to establish the viability of the proposed interaction model.

We are currently working on the implementation of OpenSocialGov container,
while OpenSocial API extensions have already been implemented. Future work
focuses on the completion of a prototype implementation of OpenSocialGov and the
exploration of a real-world test case to evaluate the proposed concepts in practice. In
addition, security and trust issues must be thoroughly examined.

References
1. S. Sahraoui, A. Ghoneim, Z. Irani., S. Ozkan (2008), “T-Government for benefit realisation: A

research agenda”. Evaluating information Systems. Public and Private Sector, I. Zahir L. Peter,
eds, Butterworth-Heinemann/Elsevier, pp 359-373.

2. A. Dais, M. Nikolaidou, N. Alexopoulou, D. Anagnostopoulos (2008) “Introducing a Public
Agency Networking Platform towards supporting Connected Governance”, 7th Int’l Conf
(EGOV 2008), LNCS 5184, Springer, pp 375-387.

3. A. Dais, M. Nikolaidou, D.Anagnostopoulos (2009), "Facilitating Business to Goverment
Interaction using a Citizen-centric Web 2.0 Model", IFIP 305 (I3E 2009), Springer Verlag.

4. http://code.google.com/apis/opensocial/, Accessed 22/03/2011
5. http://www.google.gr/ig, Accessed 22/03/2011
6. http://www.myspace.com/ Accessed 22/03/2011
7. http://oauth.net/, Accessed 22/03/201
8. http://www.openajax.org/member/wiki/OpenAjax_Hub_1.0_Specification_PublishSubscribe,

Accessed 22/03/2011
9. European Interoperability Framework for European Public Services (EIF) ver. 2.0, 2010
10. http://doc.esd.org.uk/IPSV/2.00.html, Accessed 22/03/2011

